External validation study on the value of deep learning algorithm for the prediction of hematoma expansion from noncontrast CT scans

Author:

Guo Dong Chuang,Gu Jun,He Jian,Chu Hai Rui,Dong Na,Zheng Yi Feng

Abstract

Abstract Background Hematoma expansion is an independent predictor of patient outcome and mortality. The early diagnosis of hematoma expansion is crucial for selecting clinical treatment options. This study aims to explore the value of a deep learning algorithm for the prediction of hematoma expansion from non-contrast computed tomography (NCCT) scan through external validation. Methods 102 NCCT images of hypertensive intracerebral hemorrhage (HICH) patients diagnosed in our hospital were retrospectively reviewed. The initial computed tomography (CT) scan images were evaluated by a commercial Artificial Intelligence (AI) software using deep learning algorithm and radiologists respectively to predict hematoma expansion and the corresponding sensitivity, specificity and accuracy of the two groups were calculated and compared. Comparisons were also conducted among gold standard hematoma expansion diagnosis time, AI software diagnosis time and doctors’ reading time. Results Among 102 HICH patients, the sensitivity, specificity, and accuracy of hematoma expansion prediction in the AI group were higher than those in the doctor group(80.0% vs 66.7%, 73.6% vs 58.3%, 75.5% vs 60.8%), with statistically significant difference (p < 0.05). The AI diagnosis time (2.8 ± 0.3 s) and the doctors’ diagnosis time (11.7 ± 0.3 s) were both significantly shorter than the gold standard diagnosis time (14.5 ± 8.8 h) (p < 0.05), AI diagnosis time was significantly shorter than that of doctors (p < 0.05). Conclusions Deep learning algorithm could effectively predict hematoma expansion at an early stage from the initial CT scan images of HICH patients after onset with high sensitivity and specificity and greatly shortened diagnosis time, which provides a new, accurate, easy-to-use and fast method for the early prediction of hematoma expansion.

Funder

Public Welfare Applied Research Project of Huzhou Science and Technology Bureau

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3