Author:
Guo Dong Chuang,Gu Jun,He Jian,Chu Hai Rui,Dong Na,Zheng Yi Feng
Abstract
Abstract
Background
Hematoma expansion is an independent predictor of patient outcome and mortality. The early diagnosis of hematoma expansion is crucial for selecting clinical treatment options. This study aims to explore the value of a deep learning algorithm for the prediction of hematoma expansion from non-contrast computed tomography (NCCT) scan through external validation.
Methods
102 NCCT images of hypertensive intracerebral hemorrhage (HICH) patients diagnosed in our hospital were retrospectively reviewed. The initial computed tomography (CT) scan images were evaluated by a commercial Artificial Intelligence (AI) software using deep learning algorithm and radiologists respectively to predict hematoma expansion and the corresponding sensitivity, specificity and accuracy of the two groups were calculated and compared. Comparisons were also conducted among gold standard hematoma expansion diagnosis time, AI software diagnosis time and doctors’ reading time.
Results
Among 102 HICH patients, the sensitivity, specificity, and accuracy of hematoma expansion prediction in the AI group were higher than those in the doctor group(80.0% vs 66.7%, 73.6% vs 58.3%, 75.5% vs 60.8%), with statistically significant difference (p < 0.05). The AI diagnosis time (2.8 ± 0.3 s) and the doctors’ diagnosis time (11.7 ± 0.3 s) were both significantly shorter than the gold standard diagnosis time (14.5 ± 8.8 h) (p < 0.05), AI diagnosis time was significantly shorter than that of doctors (p < 0.05).
Conclusions
Deep learning algorithm could effectively predict hematoma expansion at an early stage from the initial CT scan images of HICH patients after onset with high sensitivity and specificity and greatly shortened diagnosis time, which provides a new, accurate, easy-to-use and fast method for the early prediction of hematoma expansion.
Funder
Public Welfare Applied Research Project of Huzhou Science and Technology Bureau
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference34 articles.
1. He ML. Attention should be paid to the regulation of hypertension in the early stage of intracerebral hemorrhage. Chin J Neurol. 2018;51(04):244–6.
2. Scherer M, Cordes J, Younsi A, Sahin YA, Götz M, Möhlenbruch M, Stock C, Bösel J, Unterberg A, Maier-Hein K, et al. Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke. 2016;47(11):2776–82.
3. Liu WD. Progress in diagnosis and treatment of hypertensive intracerebral hemorrhage. Shanghai Med J. 2017;40(11):646–9.
4. Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA, Begtrup K, Steiner T. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66(8):1175–81.
5. Li Q, Liu QJ, Yang WS, Wang XC, Zhao LB, Xiong X, Li R, Cao D, Zhu D, Wei X, et al. Island sign: an imaging predictor for early hematoma expansion and poor outcome in patients with intracerebral hemorrhage. Stroke. 2017;48(11):3019–25.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献