Author:
Saiviroonporn Pairash,Rodbangyang Kanchanaporn,Tongdee Trongtum,Chaisangmongkon Warasinee,Yodprom Pakorn,Siriapisith Thanogchai,Wonglaksanapimon Suwimon,Thiravit Phakphoom
Abstract
Abstract
Background
Artificial Intelligence (AI) is a promising tool for cardiothoracic ratio (CTR) measurement that has been technically validated but not clinically evaluated on a large dataset. We observed and validated AI and manual methods for CTR measurement using a large dataset and investigated the clinical utility of the AI method.
Methods
Five thousand normal chest x-rays and 2,517 images with cardiomegaly and CTR values, were analyzed using manual, AI-assisted, and AI-only methods. AI-only methods obtained CTR values from a VGG-16 U-Net model. An in-house software was used to aid the manual and AI-assisted measurements and to record operating time. Intra and inter-observer experiments were performed on manual and AI-assisted methods and the averages were used in a method variation study. AI outcomes were graded in the AI-assisted method as excellent (accepted by both users independently), good (required adjustment), and poor (failed outcome). Bland–Altman plot with coefficient of variation (CV), and coefficient of determination (R-squared) were used to evaluate agreement and correlation between measurements. Finally, the performance of a cardiomegaly classification test was evaluated using a CTR cutoff at the standard (0.5), optimum, and maximum sensitivity.
Results
Manual CTR measurements on cardiomegaly data were comparable to previous radiologist reports (CV of 2.13% vs 2.04%). The observer and method variations from the AI-only method were about three times higher than from the manual method (CV of 5.78% vs 2.13%). AI assistance resulted in 40% excellent, 56% good, and 4% poor grading. AI assistance significantly improved agreement on inter-observer measurement compared to manual methods (CV; bias: 1.72%; − 0.61% vs 2.13%; − 1.62%) and was faster to perform (2.2 ± 2.4 secs vs 10.6 ± 1.5 secs). The R-squared and classification-test were not reliable indicators to verify that the AI-only method could replace manual operation.
Conclusions
AI alone is not yet suitable to replace manual operations due to its high variation, but it is useful to assist the radiologist because it can reduce observer variation and operation time. Agreement of measurement should be used to compare AI and manual methods, rather than R-square or classification performance tests.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献