MR–CT image fusion method of intracranial tumors based on Res2Net

Author:

Chen Wei,Li Qixuan,Zhang Heng,Sun Kangkang,Sun Wei,Jiao Zhuqing,Ni Xinye

Abstract

Abstract Background Information complementarity can be achieved by fusing MR and CT images, and fusion images have abundant soft tissue and bone information, facilitating accurate auxiliary diagnosis and tumor target delineation. Purpose The purpose of this study was to construct high-quality fusion images based on the MR and CT images of intracranial tumors by using the Residual-Residual Network (Res2Net) method. Methods This paper proposes an MR and CT image fusion method based on Res2Net. The method comprises three components: feature extractor, fusion layer, and reconstructor. The feature extractor utilizes the Res2Net framework to extract multiscale features from source images. The fusion layer incorporates a fusion strategy based on spatial mean attention, adaptively adjusting fusion weights for feature maps at each position to preserve fine details from the source images. Finally, fused features are input into the feature reconstructor to reconstruct a fused image. Results Qualitative results indicate that the proposed fusion method exhibits clear boundary contours and accurate localization of tumor regions. Quantitative results show that the method achieves average gradient, spatial frequency, entropy, and visual information fidelity for fusion metrics of 4.6771, 13.2055, 1.8663, and 0.5176, respectively. Comprehensive experimental results demonstrate that the proposed method preserves more texture details and structural information in fused images than advanced fusion algorithms, reducing spectral artifacts and information loss and performing better in terms of visual quality and objective metrics. Conclusion The proposed method effectively combines MR and CT image information, allowing the precise localization of tumor region boundaries, assisting clinicians in clinical diagnosis.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Medical Key Discipline Construction Unit (Oncology Therapeutics

Social Development Project of Jiangsu Provincial Key Research & Development Plan

General Project of Jiangsu Provincial Health Commission

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3