Motion artefact reduction in coronary CT angiography images with a deep learning method

Author:

Ren Pengling,He Yi,Zhu Yi,Zhang Tingting,Cao Jiaxin,Wang Zhenchang,Yang Zhenghan

Abstract

Abstract Background The aim of this study was to investigate the ability of a pixel-to-pixel generative adversarial network (GAN) to remove motion artefacts in coronary CT angiography (CCTA) images. Methods Ninety-seven patients who underwent single-cardiac-cycle multiphase CCTA were retrospectively included in the study, and raw CCTA images and SnapShot Freeze (SSF) CCTA images were acquired. The right coronary artery (RCA) was investigated because its motion artefacts are the most prominent among the artefacts of all coronary arteries. The acquired data were divided into a training dataset of 40 patients, a verification dataset of 30 patients and a test dataset of 27 patients. A pixel-to-pixel GAN was trained to generate improved CCTA images from the raw CCTA imaging data using SSF CCTA images as targets. The GAN’s ability to remove motion artefacts was evaluated by the structural similarity (SSIM), Dice similarity coefficient (DSC) and circularity index. Furthermore, the image quality was visually assessed by two radiologists. Results The circularity was significantly higher for the GAN-generated images than for the raw images of the RCA (0.82 ± 0.07 vs. 0.74 ± 0.11, p < 0.001), and there was no significant difference between the GAN-generated images and SSF images (0.82 ± 0.07 vs. 0.82 ± 0.06, p = 0.96). Furthermore, the GAN-generated images achieved the SSIM of 0.87 ± 0.06, significantly better than those of the raw images 0.83 ± 0.08 (p < 0.001). The results for the DSC showed that the overlap between the GAN-generated and SSF images was significantly higher than the overlap between the GAN-generated and raw images (0.84 ± 0.08 vs. 0.78 ± 0.11, p < 0.001). The motion artefact scores of the GAN-generated CCTA images of the pRCA and mRCA were significantly higher than those of the raw CCTA images (3 [4–3] vs 4 [5–4], p = 0.022; 3 [3–2] vs 5[5–4], p < 0.001). Conclusions A GAN can significantly reduce the motion artefacts in CCTA images of the middle segment of the RCA and has the potential to act as a new method to remove motion artefacts in coronary CCTA images.

Funder

Beijing Scholar

National Key Research and Development Program of China

Beijing Municipal Commission of Science and Technology

Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3