Effect of cerebrospinal fluid area mask correction on 123I-FP-CIT SPECT images in idiopathic normal pressure hydrocephalus

Author:

Ohba Makoto,Kobayashi Ryota,Iseki Chifumi,Kirii Kazukuni,Morioka Daichi,Otani Koichi,Ohta Yasuyuki,Sonoda Yukihiko,Suzuki Koji,Kanoto Masafumi

Abstract

Abstract Background Cerebrospinal fluid (CSF) area mask correction reduces the influence of low [123I]-N-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) nortropane (123I-FP-CIT) accumulation in the volume of interest (VOI) by CSF area dilatation on the specific binding ratio (SBR) calculated using the Southampton method. We assessed the effect of CSF area mask correction on the SBR for idiopathic normal pressure hydrocephalus (iNPH) characterized by CSF area dilatation. Methods We enrolled 25 patients with iNPH who were assessed using 123I-FP-CIT single-photon emission computed tomography (SPECT) before shunt surgery or the tap test. The SBRs with and without CSF area mask correction were calculated, and changes in quantitative values were verified. Additionally, the number of voxels in the striatal and background (BG) VOI before and after CSF area mask correction were extracted. The number of voxels after correction was subtracted from that before correction, and the volume removed by the CSF area mask correction was calculated. The volumes removed from each VOI were compared to verify their effect on SBR. Results The images of 20 and 5 patients with SBRs that were decreased and increased, respectively, by CSF area mask correction showed that the volumes removed from the BG region VOI were higher and lower, respectively than those in the striatal region. Conclusions The SBR before and after CSF area mask correction was associated with the ratio of the volume removed from the striatal and BG VOIs, and the SBR was high or low according to the ratio. The results suggest that CSF area mask correction is effective in patients with iNPH. Trial registration This study was registered in the UMIN Clinical Trials Registry (UMIN-CTR) as UMIN study ID: UMIN000044826. 11/07/2021.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3