Author:
Ohba Makoto,Kobayashi Ryota,Iseki Chifumi,Kirii Kazukuni,Morioka Daichi,Otani Koichi,Ohta Yasuyuki,Sonoda Yukihiko,Suzuki Koji,Kanoto Masafumi
Abstract
Abstract
Background
Cerebrospinal fluid (CSF) area mask correction reduces the influence of low [123I]-N-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) nortropane (123I-FP-CIT) accumulation in the volume of interest (VOI) by CSF area dilatation on the specific binding ratio (SBR) calculated using the Southampton method. We assessed the effect of CSF area mask correction on the SBR for idiopathic normal pressure hydrocephalus (iNPH) characterized by CSF area dilatation.
Methods
We enrolled 25 patients with iNPH who were assessed using 123I-FP-CIT single-photon emission computed tomography (SPECT) before shunt surgery or the tap test. The SBRs with and without CSF area mask correction were calculated, and changes in quantitative values were verified. Additionally, the number of voxels in the striatal and background (BG) VOI before and after CSF area mask correction were extracted. The number of voxels after correction was subtracted from that before correction, and the volume removed by the CSF area mask correction was calculated. The volumes removed from each VOI were compared to verify their effect on SBR.
Results
The images of 20 and 5 patients with SBRs that were decreased and increased, respectively, by CSF area mask correction showed that the volumes removed from the BG region VOI were higher and lower, respectively than those in the striatal region.
Conclusions
The SBR before and after CSF area mask correction was associated with the ratio of the volume removed from the striatal and BG VOIs, and the SBR was high or low according to the ratio. The results suggest that CSF area mask correction is effective in patients with iNPH.
Trial registration
This study was registered in the UMIN Clinical Trials Registry (UMIN-CTR) as UMIN study ID: UMIN000044826. 11/07/2021.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging