Automated cervical cell segmentation using deep ensemble learning

Author:

Ji Jie,Zhang Weifeng,Dong Yuejiao,Lin Ruilin,Geng Yiqun,Hong Liangli

Abstract

Abstract Background Cervical cell segmentation is a fundamental step in automated cervical cancer cytology screening. The aim of this study was to develop and evaluate a deep ensemble model for cervical cell segmentation including both cytoplasm and nucleus segmentation. Methods The Cx22 dataset was used to develop the automated cervical cell segmentation algorithm. The U-Net, U-Net +  + , DeepLabV3, DeepLabV3Plus, Transunet, and Segformer were used as candidate model architectures, and each of the first four architectures adopted two different encoders choosing from resnet34, resnet50 and denseNet121. Models were trained under two settings: trained from scratch, encoders initialized from ImageNet pre-trained models and then all layers were fine-tuned. For every segmentation task, four models were chosen as base models, and Unweighted average was adopted as the model ensemble method. Results U-Net and U-Net +  + with resnet34 and denseNet121 encoders trained using transfer learning consistently performed better than other models, so they were chosen as base models. The ensemble model obtained the Dice similarity coefficient, sensitivity, specificity of 0.9535 (95% CI:0.9534–0.9536), 0.9621 (0.9619–0.9622),0.9835 (0.9834–0.9836) and 0.7863 (0.7851–0.7876), 0.9581 (0.9573–0.959), 0.9961 (0.9961–0.9962) on cytoplasm segmentation and nucleus segmentation, respectively. The Dice, sensitivity, specificity of baseline models for cytoplasm segmentation and nucleus segmentation were 0.948, 0.954, 0.9823 and 0.750, 0.713, 0.9988, respectively. Except for the specificity of cytoplasm segmentation, all metrics outperformed the best baseline models (P < 0.05) with a moderate margin. Conclusions The proposed algorithm achieved better performances on cervical cell segmentation than baseline models. It can be potentially used in automated cervical cancer cytology screening system.

Funder

Li Kashing Foundation Cross-Disciplinary Research Program

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3