Application of preoperative ultrasound features combined with clinical factors in predicting HER2-positive subtype (non-luminal) breast cancer

Author:

Zhou Jin,Jin An-qi,Zhou Shi-chong,Li Jia-wei,Zhi Wen-xiang,Huang Yun-xia,Zhu Qian,Qian Lang,Wu Jiong,Chang Cai

Abstract

Abstract Background Human epidermal growth factor receptor2+ subtype breast cancer has a high degree of malignancy and a poor prognosis. The aim of this study is to develop a prediction model for the human epidermal growth factor receptor2+ subtype (non-luminal) of breast cancer based on the clinical and ultrasound features related with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor2. Methods We collected clinical data and reviewed preoperative ultrasound images of enrolled breast cancers from September 2017 to August 2020. We divided the data into in three groups as follows. Group I: estrogen receptor ± , Group II: progesterone receptor ± and Group III: human epidermal growth factor receptor2 ± . Univariate and multivariate logistic regression analyses were used to analyze the clinical and ultrasound features related with biomarkers among these groups. A model to predict human epidermal growth factor receptor2+ subtype was then developed based on the results of multivariate regression analyses, and the efficacy was evaluated using the area under receiver operating characteristic curve, accuracy, sensitivity, specificity. Results The human epidermal growth factor receptor2+ subtype accounted for 138 cases (11.8%) in the training set and 51 cases (10.1%) in the test set. In the multivariate regression analysis, age ≤ 50 years was an independent predictor of progesterone receptor + (p = 0.007), and posterior enhancement was a negative predictor of progesterone receptor + (p = 0.013) in Group II; palpable axillary lymph node, round, irregular shape and calcifications were independent predictors of the positivity for human epidermal growth factor receptor-2 in Group III (p = 0.001, p = 0.007, p = 0.010, p < 0.001, respectively). In Group I, shape was the only factor related to estrogen receptor status in the univariate analysis (p < 0.05). The area under receiver operating characteristic curve, accuracy, sensitivity, specificity of the model to predict human epidermal growth factor receptor2+ subtype breast cancer was 0.697, 60.14%, 72.46%, 58.49% and 0.725, 72.06%, 64.71%, 72.89% in the training and test sets, respectively. Conclusions Our study established a model to predict the human epidermal growth factor receptor2-positive subtype with moderate performance. And the results demonstrated that clinical and ultrasound features were significantly associated with biomarkers.

Funder

the Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Shanghai Engineering Research Center of Artificial Intelligence Technology for Tumor Disease

Xuhui District Artificial Intelligence Medical Hospital Cooperation Project

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3