Author:
Cao Xiaohui,Liu Ming,Zhai Fushan,Li Nan,Li Feng,Bao Chaoen,Liu Yinliang,Chen Gang
Abstract
Abstract
Background
Lung cancer is a leading cause of morbidity and mortality worldwide. Radiotherapy for lung cancer is beneficial in both the radical and palliative settings, and technologic advances in recent years now afford an opportunity for this treatment to be more targeted than ever before. Although the delivery of more accurate forms of radiotherapy has minimized the risks of side-effects, how to utilize this treatment to optimize outcomes remains questionable. This study aimed to evaluate the accuracy of cone beam computed tomography (CBCT) image registration used in image-guided radiotherapy, providing reasonable guidance for clinic application of CBCT in lung cancer.
Methods
A total of 53 patients with lung carcinoma including 34 central and 19 peripheral lesions were collected in this study. Varian-IX linear accelerator on-board imaging (OBI) system was used to acquire CBCT scans in three-dimensional (3D) conformal radiotherapy before delivery. Different regions (whole lung/target/vertebrae/ipsilateral structure) were manually registered, and the position deviation and the registration time were analyzed.
Results
It was suggested that 34 cases belonged to central type and 19 cases belonged to peripheral type. The volume of left lung and right lung was 1242.98 ± 452.46 cc, 1689.69 ± 574.31 cc, respectively. Tumor size was 6.65 ± 3.87 cm in diameter, and 129.67 ± 136.48 cc in volume. The percentage of left lung and right lung was 6.17 ± 1.24%, 4.74 ± 0.38%, respectively. The position deviation value and absolute value of image registration methods of X, Y and Z axis were not significant (P > 0.05). However, registration time (s) between whole lung registration group, tumor registration group, vertebral body registration group, affected lung registration group, and artificial registration group, was 3.651 ± 0.867 s, 1.144 ± 0.129 s, 1.226 ± 0.126 s, 2.081 ± 0.427 s, 179.491 ± 71.975 s, respectively. The differences were significant (P < 0.05). The registration differences between small tumor group and large tumor group were not statistically significant (P > 0.05).
Conclusion
The automatic image matching of OBI is accuracy and high reliability in recognition of offset error. Registering body or ipsilateral structure is recommended to be used in CBCT for lung cancer.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference29 articles.
1. Sun KX, Zheng RS, Zeng HM, Zhang SW, Zou XN, Gu XY, Xia CF, Yang ZX, Li H, Chen WQ, He J. The incidence and mortality of lung cancer in China, 2014. Zhonghua Zhong Liu Za Zhi. 2018;40(11):805–11.
2. Corkum MT, Rodrigues GB. Patient selection for thoracic radiotherapy in extensive-stage small-cell lung cancer. Lung Cancer Manag. 2017;6(2):47–53.
3. Deshpande S, Dhote D, Thakur K, Pawar A, Kumar R, Kumar M, Kulkarni MS, Sharma SD, Kannan V. Measurement of eye lens dose for Varian on-board imaging with different cone-beam computed tomography acquisition techniques. J Med Phys. 2016;41(3):177–81.
4. Richter A, Hu Q, Steglich D, Baier K, Wilbert J, Guckenberger M, Flentje M. Investigation of the usability of conebeam CT data sets for dose calculation. Radiat Oncol. 2008;3:42.
5. Zhang R, Li P, Li Q, Qiao Y, Xu T, Ruan P, Song Q, Fu Z. Radiotherapy improves the survival of patients with extensive-disease small-cell lung cancer: a propensity score matched analysis of surveillance, epidemiology, and end results database. Cancer Manag Res. 2018;10:6525–35.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献