Author:
Xie Xiao,Ma Yibo,Xing Xiaoxiao,Zhou Haixia,Liu Shuiqing,Zhang Yanyan,Xu Min
Abstract
Abstract
Objective
To obtain the elastic quantitative and semi-quantitative indexes of solid breast masses using ultrasound linear array probes with two different frequencies, and to construct prediction models and evaluate their diagnostic values.
Methods
A total of 92 patients who were scheduled for surgical treatment on solid breast masses were enrolled in this study. Linear array probes with two frequencies, 9-3 MHz (L9 group) and 14-5 MHz (L14 group), were used for sound touch elastography and strain elastography before surgery, and the maximum elasticity value (Emax), average elasticity value (Emean), minimum elasticity value (Emin), standard deviation (SD)(in kPa), elasticity ratio (E), and strain ratio to fat (SRf) were recorded and calculated for the breast mass (A) and surrounding tissues (Shell). The elastic characteristic indexes of the L9 group and L14 group were compared, and the prediction models of these two groups were constructed using Logistic regression method.
Results
The diagnostic performance of the prediction model based on L9 group was better than the model based on L14 group (AUC: 0.904 vs. 0.810, P = 0.0343, z = 2.116) and the best single index EMax-shell-L9 (P = 0.0398, z = 2.056). The sensitivity of L9 based model was 85.19% and the specificity was 84.21%.
Conclusion
The prediction model based on quantitative and semi-quantitative elastic ultrasound indexes from L9-3 probe exhibited better performance, which could improve the diagnostic accuracy for malignant breast tumors.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference26 articles.
1. Y Z, Pa X. A Z, et al. Preliminary Study on the Application Value of Sound Touch Elastography in Benign Breast Lesions[J]. Chin J Ultrasound Med. 2020;36(01):18–21. doi.
2. Q LW. Y, J B, et al. Experimental Study on the Measurement of Elastography Index of Modules by Using Shear Wave Technique[J]. Chin J Ultrasound Med. 2018;34(07):655–9. doi.
3. L Y, J Y, Q W, et al. Factors Inlfuencing Shear Wave Velocity by Using Elasiticity Imaging Technique[J]. Chinese Journal of Medical Imaging, 2014, (9): 697–700. doi: https://doi.org/10.3969/j.issn.1005-5185.2014.09.19.
4. Kehe Z, Fanghong C, Haiping Z. Analysis of the Influence of Mass Depth on Mammography Results of Ultrasonography[J]. J Med Imaging. 2021;31(4):596–9. doi.
5. Yoon JH, Jung HK, Lee JT, et al. Shear-wave elastography in the diagnosis of solid breast masses: what leads to false-negative or false-positive results?[J]. Eur Radiol. 2013;23(9):2432–40. doi:https://doi.org/10.1007/s00330-013-2854-6.