Placental T2WI MRI-based radiomics-clinical nomogram predicts suspicious placenta accreta spectrum in patients with placenta previa

Author:

Yu Hongchang,Yin Hongkun,Zhang Huiling,Zhang Jibin,Yue Yongfei,Lu Yanli

Abstract

Abstract Background The incidence of placenta accreta spectrum (PAS) increases in women with placenta previa (PP). Many radiologists sometimes cannot completely and accurately diagnose PAS through the simple visual feature analysis of images, which can affect later treatment decisions. The study is to develop a T2WI MRI-based radiomics-clinical nomogram and evaluate its performance for non-invasive prediction of suspicious PAS in patients with PP. Methods The preoperative MR images and related clinical data of 371 patients with PP were retrospectively collected from our hospital, and the intraoperative examination results were used as the reference standard of the PAS. Radiomics features were extracted from sagittal T2WI MR images and further selected by LASSO regression analysis. The radiomics score (Radscore) was calculated with logistic regression (LR) classifier. A nomogram integrating Radscore and selected clinical factors was also developed. The model performance was assessed with respect to discrimination, calibration and clinical usefulness. Results A total of 6 radiomics features and 1 clinical factor were selected for model construction. The Radscore was significantly associated with suspicious PAS in both the training (p < 0.001) and validation (p < 0.001) datasets. The AUC of the nomogram was also higher than that of the Radscore in the training dataset (0.891 vs. 0.803, p < 0.001) and validation dataset (0.897 vs. 0.780, p < 0.001), respectively. The calibration was good, and the decision curve analysis demonstrated the nomogram had higher net benefit than the Radscore. Conclusions The T2WI MRI-based radiomics-clinical nomogram showed favorable diagnostic performance for predicting PAS in patients with PP, which could potentially facilitate the obstetricians for making clinical decisions.

Funder

Suzhou Science and Technology Plan Research Project

Maternal and children’s health research project of Jiangsu Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3