Author:
Yu Hongchang,Yin Hongkun,Zhang Huiling,Zhang Jibin,Yue Yongfei,Lu Yanli
Abstract
Abstract
Background
The incidence of placenta accreta spectrum (PAS) increases in women with placenta previa (PP). Many radiologists sometimes cannot completely and accurately diagnose PAS through the simple visual feature analysis of images, which can affect later treatment decisions. The study is to develop a T2WI MRI-based radiomics-clinical nomogram and evaluate its performance for non-invasive prediction of suspicious PAS in patients with PP.
Methods
The preoperative MR images and related clinical data of 371 patients with PP were retrospectively collected from our hospital, and the intraoperative examination results were used as the reference standard of the PAS. Radiomics features were extracted from sagittal T2WI MR images and further selected by LASSO regression analysis. The radiomics score (Radscore) was calculated with logistic regression (LR) classifier. A nomogram integrating Radscore and selected clinical factors was also developed. The model performance was assessed with respect to discrimination, calibration and clinical usefulness.
Results
A total of 6 radiomics features and 1 clinical factor were selected for model construction. The Radscore was significantly associated with suspicious PAS in both the training (p < 0.001) and validation (p < 0.001) datasets. The AUC of the nomogram was also higher than that of the Radscore in the training dataset (0.891 vs. 0.803, p < 0.001) and validation dataset (0.897 vs. 0.780, p < 0.001), respectively. The calibration was good, and the decision curve analysis demonstrated the nomogram had higher net benefit than the Radscore.
Conclusions
The T2WI MRI-based radiomics-clinical nomogram showed favorable diagnostic performance for predicting PAS in patients with PP, which could potentially facilitate the obstetricians for making clinical decisions.
Funder
Suzhou Science and Technology Plan Research Project
Maternal and children’s health research project of Jiangsu Province
Publisher
Springer Science and Business Media LLC