Three-dimensional CT texture analysis of anatomic liver segments can differentiate between low-grade and high-grade fibrosis

Author:

Budai Bettina KatalinORCID,Tóth Ambrus,Borsos Petra,Frank Veronica Grace,Shariati Sonaz,Fejér Bence,Folhoffer Anikó,Szalay Ferenc,Bérczi Viktor,Kaposi Pál Novák

Abstract

Abstract Background CT texture analysis (CTTA) has been successfully used to assess tissue heterogeneity in multiple diseases. The purpose of this work is to demonstrate the value of three-dimensional CTTA in the evaluation of diffuse liver disease. We aimed to develop CTTA based prediction models, which can be used for staging of fibrosis in different anatomic liver segments irrespective of variations in scanning parameters. Methods We retrospectively collected CT scans of thirty-two chronic hepatitis patients with liver fibrosis. The CT examinations were performed on either a 16- or a 64-slice scanner. Altogether 354 anatomic liver segments were manually highlighted on portal venous phase images, and 1117 three-dimensional texture parameters were calculated from each segment. The segments were divided between groups of low-grade and high-grade fibrosis using shear-wave elastography. The highly-correlated features (Pearson r > 0.95) were filtered out, and the remaining 453 features were normalized and used in a classification with k-means and hierarchical cluster analysis. The segments were split between the train and test sets in equal proportion (analysis I) or based on the scanner type (analysis II) into 64-slice train 16-slice validation cohorts for machine learning classification, and a subset of highly prognostic features was selected with recursive feature elimination. Results A classification with k-means and hierarchical cluster analysis divided segments into four main clusters. The average CT density was significantly higher in cluster-4 (110 HU ± SD = 10.1HU) compared to the other clusters (c1: 96.1 HU ± SD = 11.3HU; p < 0.0001; c2: 90.8 HU ± SD = 16.8HU; p < 0.0001; c3: 93.1 HU ± SD = 17.5HU; p < 0.0001); but there was no difference in liver stiffness or scanner type among the clusters. The optimized random forest classifier was able to distinguish between low-grade and high-grade fibrosis with excellent cross-validated accuracy in both the first and second analysis (AUC = 0.90, CI = 0.85–0.95 vs. AUC = 0.88, CI = 0.84–0.91). The final support vector machine model achieved an excellent prediction rate in the second analysis (AUC = 0.91, CI = 0.88–0.94) and an acceptable prediction rate in the first analysis (AUC = 0.76, CI = 0.67–0.84). Conclusions In conclusion, CTTA-based models can be successfully applied to differentiate high-grade from low-grade fibrosis irrespective of the imaging platform. Thus, CTTA may be useful in the non-invasive prognostication of patients with chronic liver disease.

Funder

Magyar Tudományos Akadémia

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3