Altered trends of local brain function in classical trigeminal neuralgia patients after a single trigger pain

Author:

Yan Juncheng,Wang Luoyu,Pan Lei,Ye Haiqi,Zhu Xiaofen,Feng Qi,Wang Haibin,Ding Zhongxiang,Ge XiuhongORCID

Abstract

Abstract Objective To investigate the altered trends of regional homogeneity (ReHo) based on time and frequency, and clarify the time-frequency characteristics of ReHo in 48 classical trigeminal neuralgia (CTN) patients after a single pain stimulate. Methods All patients underwent three times resting-state functional MRI (before stimulation (baseline), after stimulation within 5 s (triggering-5 s), and in the 30th min of stimulation (triggering-30 min)). The spontaneous brain activity was investigated by static ReHo (sReHo) in five different frequency bands and dynamic ReHo (dReHo) methods. Results In the five frequency bands, the number of brain regions which the sReHo value changed in classical frequency band were most, followed by slow 4 frequency band. The left superior occipital gyrus was only found in slow 2 frequency band and the left superior parietal gyrus was only found in slow 3 frequency band. The dReHo values were changed in midbrain, left thalamus, right putamen, and anterior cingulate cortex, which were all different from the brain regions that the sReHo value altered. There were four altered trends of the sReHo and dReHo, which dominated by decreased at triggering-5 s and increased at triggering-30 min. Conclusions The duration of brain function changed was more than 30 min after a single pain stimulate, although the pain of CTN was transient. The localized functional homogeneity has time-frequency characteristic in CTN patients after a single pain stimulate, and the changed brain regions of the sReHo in five frequency bands and dReHo complemented to each other. Which provided a certain theoretical basis for exploring the pathophysiology of CTN.

Funder

Medical and Health Technology Project of Hangzhou

Natural Science Foundation of Zhejiang Province

Zhejiang Provincial Medical and Health Technology Project

Hangzhou Agriculture and Social Development Scientific Research Guidance Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3