Application of magnetic resonance image compilation (MAGiC) in the diagnosis of middle-aged and elderly women with osteoporosis

Author:

Chen Yiming,Mei Xiuting,Liang Xuqian,Cao Yi,Peng Cong,Fu Yang,Zhang Yulong,Liu Cuifang,Liu Yang

Abstract

Abstract Objective To investigate the feasibility of diagnosing osteoporosis (OP) in women through magnetic resonance image compilation (MAGiC). Methods A total of 110 patients who underwent lumbar magnetic resonance imaging and dual X-ray absorptiometry examinations were collected and divided into two groups according bone mineral density: osteoporotic group (OP) and non-osteoporotic group (non-OP). The variation trends of T1 (longitudinal relaxation time), T2 (transverse relaxation time) and BMD (bone mineral density) with the increase of age, and the correlation of T1 and T2 with BMD were examined by establishing a clinical mathematical model. Results With the increase of age, BMD and T1 value decreased gradually, while T2 value increased. T1 and T2 had statistical significance in diagnosing OP (P < 0.001), and there is moderate positive correlation between T1 and BMD values (R = 0.636, P < 0.001), while moderate negative correlation between T2 and BMD values (R=-0.694, P < 0.001). Receiver characteristic curve test showed that T1 and T2 had high accuracy in diagnosing OP (T1 AUC = 0.982, T2 AUC = 0.978), and the critical values of T1 and T2 for evaluating osteoporosis were 0.625s and 0.095s, respectively. Besides, the combined utilization of T1 and T2 had higher diagnostic efficiency (AUC = 0.985). Combined T1 and T2 had higher diagnostic efficiency (AUC = 0.985). Function fitting results of OP group: BMD=-0.0037* age − 0.0015*T1 + 0.0037*T2 + 0.86, sum of squared error (SSE) = 0.0392, and non-OP group: BMD = 0.0024* age − 0.0071*T1 + 0.0007*T2 + 1.41, SSE = 0.1007. Conclusion T1 and T2 value of MAGiC have high efficiency in diagnosing OP by establishing a function fitting formula of BMD with T1, T2 and age.

Funder

Science and Technology Research Project of Chongqing Education Commission

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3