Automated brain volumetric measures with AccuBrain: version comparison in accuracy, reproducibility and application for diagnosis

Author:

Zhao Lei,Luo Yishan,Mok Vincent,Shi Lin

Abstract

Abstract Background Automated brain volumetry has been widely used to assess brain volumetric changes that may indicate clinical states and progression. Among the tools that implement automated brain volumetry, AccuBrain has been validated for its accuracy, reliability and clinical applications for the older version (IV1.2). Here, we aim to investigate the performance of an updated version (IV2.0) of AccuBrain for future use from several aspects. Methods Public datasets with 3D T1-weighted scans were included for version comparisons, each with Alzheimer’s disease (AD) patients and normal control (NC) subjects that were matched in age and gender. For the comparisons of the brain volumetric measures quantified from the same scans, we investigated the difference of hippocampal segmentation accuracy (using Dice similarity coefficient [DSC] as the major measurement). As AccuBrain generates a composite index (AD resemblance atrophy index, AD-RAI) that indicates similarity with AD-like brain atrophy pattern, we also compared the two versions for the diagnostic accuracy of AD versus NC with AD-RAI. Also, we examined the intra-scanner reproducibility of the two versions for the scans acquired with short-intervals using intraclass correlation coefficient. Results AccuBrain IV2.0 presented significantly higher accuracy of hippocampal segmentation (DSC: 0.91 vs. 0.89, p < 0.001) and diagnostic accuracy of AD (AUC: 0.977 vs. 0.921, p < 0.001) than IV1.2. The results of intra-scanner reproducibility did not favor one version over the other. Conclusions AccuBrain IV2.0 presented better segmentation accuracy and diagnostic accuracy of AD, and similar intra-scanner reproducibility compared with IV1.2. Both versions should be feasible for use due to the small magnitude of differences.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3