Differential diagnosis and feature visualization for thyroid nodules using computer-aided ultrasonic diagnosis system: initial clinical assessment

Author:

Xie Fang,Luo Yu-Kun,Lan Yu,Tian Xiao-Qi,Zhu Ya-Qiong,Jin Zhuang,Zhang Ying,Zhang Ming-Bo,Song Qing,Zhang Yan

Abstract

Abstract Background To assess the diagnostic efficacy of the computer-aided ultrasonic diagnosis system (CAD system) in differentiating benign and malignant thyroid nodules. Methods The images of 296 thyroid nodules were included in validation sets. The diagnostic efficacy of the CAD system was compared with that of junior physicians and senior physicians, as well as that of the combination diagnosis of the CAD system with junior physicians. The diagnostic efficacy of the CAD system for different sizes of thyroid nodules was compared. Results The diagnostic sensitivity and accuracy of the CAD system were higher than those of junior physicians (83.4% vs. 72.2%, 73.0% vs. 69.6%), but the diagnostic specificity of the CAD system was lower than that of junior physicians (62.1% vs. 66.9%). The diagnostic accuracy of the CAD system was lower than that of senior physicians (73.0% vs. 83.8%). However, the combination diagnosis of the CAD system with junior physicians had higher accuracy (81.8%) and AUC (0.842) than those of either the CAD system or junior physicians alone, and comparable diagnostic performance with those of senior physicians. The Kappa was 0.635 in the combination diagnosis of the CAD system with junior physicians, showing good consistency with the pathological results. The accuracy (76.4%) of the CAD system was the highest for nodules of 1–2 cm. Conclusion The CAD system can effectively assist physicians to identify malignant and benign thyroid nodules, reduce the overdiagnosis and overtreatment of thyroid nodules, avoid unnecessary invasive fine needle aspiration, and improve the diagnostic accuracy of junior physicians.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3