KRAS status predicted by pretreatment MRI radiomics was associated with lung metastasis in locally advanced rectal cancer patients

Author:

Xiang Yirong,Li Shuai,Song Maxiaowei,Wang Hongzhi,Hu Ke,Wang Fengwei,Wang Zhi,Niu Zhiyong,Liu Jin,Cai Yong,Li Yongheng,Zhu Xianggao,Geng Jianhao,Zhang Yangzi,Teng Huajing,Wang Weihu

Abstract

Abstract Background Mutated KRAS may indicate an invasive nature and predict prognosis in locally advanced rectal cancer (LARC). We aimed to establish a radiomic model using pretreatment T2W MRIs to predict KRAS status and explore the association between the KRAS status or model predictions and lung metastasis. Methods In this retrospective multicentre study, LARC patients from two institutions between January 2012 and January 2019 were randomly divided into training and testing cohorts. Least absolute shrinkage and selection operator (LASSO) regression and the support vector machine (SVM) classifier were utilized to select significant radiomic features and establish a prediction model, which was validated by radiomic score distribution and decision curve analysis. The association between the model stratification and lung metastasis was investigated by Cox regression and Kaplan‒Meier survival analysis; the results were compared by the log-rank test. Results Overall, 103 patients were enrolled (73 and 30 in the training and testing cohorts, respectively). The median follow-up was 38.1 months (interquartile range: 26.9, 49.4). The radiomic model had an area under the curve (AUC) of 0.983 in the training cohort and 0.814 in the testing cohort. Using a cut-off of 0.679 defined by the receiver operating characteristic (ROC) curve, patients with a high radiomic score (RS) had a higher risk for lung metastasis (HR 3.565, 95% CI 1.337, 9.505, p = 0.011), showing similar predictive performances for the mutant and wild-type KRAS groups (HR 3.225, 95% CI 1.249, 8.323, p = 0.016, IDI: 1.08%, p = 0.687; NRI 2.23%, p = 0.766). Conclusions We established and validated a radiomic model for predicting KRAS status in LARC. Patients with high RS experienced more lung metastases. The model could noninvasively detect KRAS status and may help individualize clinical decision-making.

Funder

Peking University Medicine Sailing Program for Young Scholars’Scientific & Technological Innovation

Beijing Hospitals Authority’s Ascent Plan

Beijing Municipal Science and Technology Commission

Capital’s Funds for Health Improvement and Research

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3