Assessing the effect of scanning parameter on the size and density of pulmonary nodules: a phantom study

Author:

Meng Donghua,Wang Zhen,Bai Changsen,Ye Zhaoxiang,Gao Zhipeng

Abstract

Abstract Background Lung cancer remains a leading cause of death among cancer patients. Computed tomography (CT) plays a key role in lung cancer screening. Previous studies have not adequately quantified the effect of scanning protocols on the detected tumor size. The aim of this study was to assess the effect of various CT scanning parameters on tumor size and densitometry based on a phantom study and to investigate the optimal energy and mA image quality for screening assessment. Methods We proposed a new model using the LUNGMAN N1 phantom multipurpose anthropomorphic chest phantom (diameters: 8, 10, and 12 mm; CT values: − 100, − 630, and − 800 HU) to evaluate the influence of changes in tube voltage and tube current on the size and density of pulmonary nodules. In the LUNGMAN N1 model, three types of simulated lung nodules representing solid tumors of different sizes were used. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were used to evaluate the image quality of each scanning combination. The consistency between the calculated results based on segmentation from two physicists was evaluated using the interclass correlation coefficient (ICC). Results In terms of nodule size, the longest diameters of ground-glass nodules (GGNs) were closest to the ground truth on the images measured at 100 kVp tube voltage, and the longest diameters of solid nodules were closest to the ground truth on the images measured at 80 kVp tube voltage. In respect to density, the CT values of GGNs and solid nodules were closest to the ground truth when measured at 80 kVp and 100 kVp tube voltage, respectively. The overall agreement demonstrates that the measurements were consistent between the two physicists. Conclusions Our proposed model demonstrated that a combination of 80 kVp and 140 mA scans was preferred for measuring the size of the solid nodules, and a combination of 100 kVp and 100 mA scans was preferred for measuring the size of the GGNs when performing lung cancer screening. The CT values at 80 kVp and 100 kVp were preferred for the measurement of GGNs and solid nodules, respectively, which were closest to the true CT values of the nodules. Therefore, the combination of scanning parameters should be selected for different types of nodules to obtain more accurate nodal data.

Funder

Tianjin Municipal Education Commission Foundation

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3