Author:
Zhao Ling,Zhou Wei,Fu Yu,Ge Yanlei,Feng Li,Wang Xingwen,Li Zemao,Chen Weibin
Abstract
Abstract
Objective
Evaluation of the predictive value of one-stop energy spectrum and perfusion CT parameters for microvessel density (MVD) in colorectal cancer cancer foci.
Methods
Clinical and CT data of 82 patients with colorectal cancer confirmed by preoperative colonoscopy or surgical pathology in our hospital from September 2019 to November 2022 were collected and analyzed retrospectively. Energy spectrum CT images were measured using the Protocols general module of the GSI Viewer software of the GE AW 4.7 post-processing workstation to measure the CT values of the arterial and venous phase lesions and the neighboring normal intestinal wall in a single energy range of 40 kev∼140 kev, and the slopes of the energy spectrum curves (λ) were calculated between 40 kev-90 kev; Iodine concentration (IC), Water concentration (WC), Effective-Z (Eff-Z) and Normalized iodine concentration (NIC) were measured by placing a region of interest (ROI) on the iodine concentration map and water concentration map at the lesion and adjacent to the normal intestinal wall.Perfusion CT images were scanned continuously and dynamically using GSI Perfusion software and analyzed by applying CT Perfusion 4.0 software.Blood volume (BV), blood flow (BF), surface permeability (PS), time to peak (TTP), and mean transit time (MTT) were measured respectively in the lesion and adjacent normal colorectal wall. Based on the pathological findings, the tumors were divided into a low MVD group (MVD < 35/field of view, n = 52 cases) and a high MVD group (MVD ≥ 35/field of view, n = 30 cases) using a median of 35/field of view as the MVD grouping criterion. The collected data were statistically analyzed, the subjects’ operating characteristic curve (ROC) was plotted, and the area under curve (AUC), sensitivity, specificity, and Yoden index were calculated for the predicted efficacy of each parameter of the energy spectrum and perfusion CT and the combined parameters.
Results
The CT values, IC, NIC, λ, Eff-Z of 40kev∼140kev single energy in the arterial and venous phase of colorectal cancer in the high MVD group were higher than those in the low MVD group, and the differences were all statistically significant (p < 0.05). The AUC of each single-energy CT value in the arterial phase from 40 kev to 120 kev for determining the high or low MVD of colorectal cancer was greater than 0.8, indicating that arterial stage has a good predictive value for high or low MVD in colorectal cancer; AUC for arterial IC, NIC and IC + NIC were all greater than 0.9, indicating that in arterial colorectal cancer, both single and combined parameters of spectral CT are highly effective in predicting the level of MVD. The AUC of 40 kev to 90 kev single-energy CT values in the intravenous phase was greater than 0.9, and its diagnostic efficacy was more representative; The AUC of IC and NIC in venous stage were greater than 0.8, which indicating that the IC and NIC energy spectrum parameters in venous stage colorectal cancer have a very good predictive value for the difference between high and low MVDs, with the greatest diagnostic efficacy in IC.The values of BV and BF in the high MVD group were higher than those in the low MVD group, and the differences were statistically significant (P < 0.05), and the AUC of BF, BV, and BV + BF were 0.991, 0.733, and 0.997, respectively, with the highest diagnostic efficacy for determining the level of MVD in colorectal cancer by BV + BF.
Conclusion
One-stop CT energy spectrum and perfusion imaging technology can accurately reflect the MVD in living tumor tissues, which in turn reflects the tumor angiogenesis, and to a certain extent helps to determine the malignancy, invasion and metastasis of living colorectal cancer tumor tissues based on CT energy spectrum and perfusion parameters.
Publisher
Springer Science and Business Media LLC