Compressed sensing based dynamic MR image reconstruction by using 3D-total generalized variation and tensor decomposition: k-t TGV-TD

Author:

Zhang Jucheng,Han Lulu,Sun Jianzhong,Wang Zhikang,Xu Wenlong,Chu Yonghua,Xia Ling,Jiang Mingfeng

Abstract

Abstract Purpose Compressed Sensing Magnetic Resonance Imaging (CS-MRI) is a promising technique to accelerate dynamic cardiac MR imaging (DCMRI). For DCMRI, the CS-MRI usually exploits image signal sparsity and low-rank property to reconstruct dynamic images from the undersampled k-space data. In this paper, a novel CS algorithm is investigated to improve dynamic cardiac MR image reconstruction quality under the condition of minimizing the k-space recording. Methods The sparse representation of 3D cardiac magnetic resonance data is implemented by synergistically integrating 3D total generalized variation (3D-TGV) algorithm and high order singular value decomposition (HOSVD) based Tensor Decomposition, termed k-t TGV-TD method. In the proposed method, the low rank structure of the 3D dynamic cardiac MR data is performed with the HOSVD method, and the localized image sparsity is achieved by the 3D-TGV method. Moreover, the Fast Composite Splitting Algorithm (FCSA) method, combining the variable splitting with operator splitting techniques, is employed to solve the low-rank and sparse problem. Two different cardiac MR datasets (cardiac perfusion and cine MR datasets) are used to evaluate the performance of the proposed method. Results Compared with the state-of-art methods, such as k-t SLR, 3D-TGV, HOSVD based tensor decomposition and low-rank plus sparse method, the proposed k-t TGV-TD method can offer improved reconstruction accuracy in terms of higher peak SNR (PSNR) and structural similarity index (SSIM). The proposed k-t TGV-TD method can achieve significantly better and stable reconstruction results than state-of-the-art methods in terms of both PSNR and SSIM, especially for cardiac perfusion MR dataset. Conclusions This work proved that the k-t TGV-TD method was an effective sparse representation way for DCMRI, which was capable of significantly improving the reconstruction accuracy with different acceleration factors.

Funder

Key Research and Development Program of Zhejiang Province

National Natural Science Foundation of China

Joint Fund of Zhejiang Provincial Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3