Detection of Marchiafava Bignami disease using distinct deep learning techniques in medical diagnostics

Author:

Satheesh Kumar J.,Vinoth Kumar V.,Mahesh T. R.,Alqahtani Mohammed S.,Prabhavathy P.,Manikandan K.,Guluwadi Suresh

Abstract

Abstract Purpose To detect the Marchiafava Bignami Disease (MBD) using a distinct deep learning technique. Background Advanced deep learning methods are becoming more crucial in contemporary medical diagnostics, particularly for detecting intricate and uncommon neurological illnesses such as MBD. This rare neurodegenerative disorder, sometimes associated with persistent alcoholism, is characterized by the loss of myelin or tissue death in the corpus callosum. It poses significant diagnostic difficulties owing to its infrequency and the subtle signs it exhibits in its first stages, both clinically and on radiological scans. Methods The novel method of Variational Autoencoders (VAEs) in conjunction with attention mechanisms is used to identify MBD peculiar diseases accurately. VAEs are well-known for their proficiency in unsupervised learning and anomaly detection. They excel at analyzing extensive brain imaging datasets to uncover subtle patterns and abnormalities that traditional diagnostic approaches may overlook, especially those related to specific diseases. The use of attention mechanisms enhances this technique, enabling the model to concentrate on the most crucial elements of the imaging data, similar to the discerning observation of a skilled radiologist. Thus, we utilized the VAE with attention mechanisms in this study to detect MBD. Such a combination enables the prompt identification of MBD and assists in formulating more customized and efficient treatment strategies. Results A significant breakthrough in this field is the creation of a VAE equipped with attention mechanisms, which has shown outstanding performance by achieving accuracy rates of over 90% in accurately differentiating MBD from other neurodegenerative disorders. Conclusion This model, which underwent training using a diverse range of MRI images, has shown a notable level of sensitivity and specificity, significantly minimizing the frequency of false positive results and strengthening the confidence and dependability of these sophisticated automated diagnostic tools.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-class Breast Cancer Classification Using CNN Features Hybridization;International Journal of Computational Intelligence Systems;2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3