Improving MR image quality with a multi-task model, using convolutional losses

Author:

Simkó Attila,Ruiter Simone,Löfstedt Tommy,Garpebring Anders,Nyholm Tufve,Bylund Mikael,Jonsson Joakim

Abstract

Abstract Purpose During the acquisition of MRI data, patient-, sequence-, or hardware-related factors can introduce artefacts that degrade image quality. Four of the most significant tasks for improving MRI image quality have been bias field correction, super-resolution, motion-, and noise correction. Machine learning has achieved outstanding results in improving MR image quality for these tasks individually, yet multi-task methods are rarely explored. Methods In this study, we developed a model to simultaneously correct for all four aforementioned artefacts using multi-task learning. Two different datasets were collected, one consisting of brain scans while the other pelvic scans, which were used to train separate models, implementing their corresponding artefact augmentations. Additionally, we explored a novel loss function that does not only aim to reconstruct the individual pixel values, but also the image gradients, to produce sharper, more realistic results. The difference between the evaluated methods was tested for significance using a Friedman test of equivalence followed by a Nemenyi post-hoc test. Results Our proposed model generally outperformed other commonly-used correction methods for individual artefacts, consistently achieving equal or superior results in at least one of the evaluation metrics. For images with multiple simultaneous artefacts, we show that the performance of using a combination of models, trained to correct individual artefacts depends heavily on the order that they were applied. This is not an issue for our proposed multi-task model. The model trained using our novel convolutional loss function always outperformed the model trained with a mean squared error loss, when evaluated using Visual Information Fidelity, a quality metric connected to perceptual quality. Conclusion We trained two models for multi-task MRI artefact correction of brain, and pelvic scans. We used a novel loss function that significantly improves the image quality of the outputs over using mean squared error. The approach performs well on real world data, and it provides insight into which artefacts it detects and corrects for. Our proposed model and source code were made publicly available.

Funder

Cancer Research Foundation in Northern Sweden

Swedish Research Council, Sweden

Swedish National Infrastructure for Computing, Sweden

Umea University

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3