Author:
Chen Wen,Zhao Liang,Bian Rongrong,Li Qingzhou,Zhao Xueting,Zhang Ming
Abstract
Abstract
Background
Segmenting liver vessels from contrast-enhanced computed tomography images is essential for diagnosing liver diseases, planning surgeries and delivering radiotherapy. Nevertheless, identifying vessels is a challenging task due to the tiny cross-sectional areas occupied by vessels, which has posed great challenges for vessel segmentation, such as limited features to be learned and difficult to construct high-quality as well as large-volume data.
Methods
We present an approach that only requires a few labeled vessels but delivers significantly improved results. Our model starts with vessel enhancement by fading out liver intensity and generates candidate vessels by a classifier fed with a large number of image filters. Afterwards, the initial segmentation is refined using Markov random fields.
Results
In experiments on the well-known dataset 3D-IRCADb, the averaged Dice coefficient is lifted to 0.63, and the mean sensitivity is increased to 0.71. These results are significantly better than those obtained from existing machine-learning approaches and comparable to those generated from deep-learning models.
Conclusion
Sophisticated integration of a large number of filters is able to pinpoint effective features from liver images that are sufficient to distinguish vessels from other liver tissues under a scarcity of large-volume labeled data. The study can shed light on medical image segmentation, especially for those without sufficient data.
Funder
Natural Science Foundation of Hubei Province
Publisher
Springer Science and Business Media LLC