CT perfusion based ASPECTS improves the diagnostic performance of early ischemic changes in large vessel occlusion

Author:

Wang Tiegong,Chen Luguang,Jin Xianglan,Yuan Yuan,Zhang Qianwen,Shao Chengwei,Lu Jianping

Abstract

Abstract Background ASPECTS scoring method varies, but which one is most suitable for predicting the prognosis still unclear. We aimed to evaluate the diagnostic performance of Automated (Auto)-, noncontrast CT (NCCT)- and CT perfusion (CTP) -ASPECTS for early ischemic changes (EICs) in acute ischemic stroke patients with large vessel occlusion (LVO) and to explore which scoring method is most suitable for predicting the clinical outcome. Methods Eighty-one patients with anterior circulation LVO were retrospectively enrolled and grouped as having a good (0–2) or poor (3–6) clinical outcome using a 90-day modified Rankin Scale score. Clinical characteristics and perfusion parameters were compared between the patients with good and poor outcomes. Differences in scores obtained with the three scoring methods were assessed. Diagnosis performance and receiver operating characteristic (ROC) curves were used to evaluate the value of the three ordinal or dichotomized ASPECTS methods for predicting the clinical outcome. Results Sixty-three patients were finally included, with 36 (57.1%) patients having good clinical outcome. Significant differences were observed in the ordinal or dichotomized Auto-, NCCT- and CTP-ASPECTS between the patients with good and poor clinical outcomes (all p < 0.01). The areas under the curves (AUCs) of the ordinal and dichotomized CTP-ASPECTS were higher than that of the other two methods (all p < 0.01), but the AUCs of the Auto-ASPECTS was similar to that of the NCCT-ASPECTS (p > 0.05). Conclusions The CTP-ASPECTS is superior to the Auto- and NCCT-ASPECTS in detecting EICs in LVO. CTP-ASPECTS with a cutoff value of 6 is a good predictor of the clinical outcome at 90-day follow-up.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3