Convolutional neural network-based kidney volume estimation from low-dose unenhanced computed tomography scans

Author:

Müller Lukas,Tibyampansha Dativa,Mildenberger Peter,Panholzer Torsten,Jungmann Florian,Halfmann Moritz C.

Abstract

Abstract Purpose Kidney volume is important in the management of renal diseases. Unfortunately, the currently available, semi-automated kidney volume determination is time-consuming and prone to errors. Recent advances in its automation are promising but mostly require contrast-enhanced computed tomography (CT) scans. This study aimed at establishing an automated estimation of kidney volume in non-contrast, low-dose CT scans of patients with suspected urolithiasis. Methods The kidney segmentation process was automated with 2D Convolutional Neural Network (CNN) models trained on manually segmented 2D transverse images extracted from low-dose, unenhanced CT scans of 210 patients. The models’ segmentation accuracy was assessed using Dice Similarity Coefficient (DSC), for the overlap with manually-generated masks on a set of images not used in the training. Next, the models were applied to 22 previously unseen cases to segment kidney regions. The volume of each kidney was calculated from the product of voxel number and their volume in each segmented mask. Kidney volume results were then validated against results semi-automatically obtained by radiologists. Results The CNN-enabled kidney volume estimation took a mean of 32 s for both kidneys in a CT scan with an average of 1026 slices. The DSC was 0.91 and 0.86 and for left and right kidneys, respectively. Inter-rater variability had consistencies of ICC = 0.89 (right), 0.92 (left), and absolute agreements of ICC = 0.89 (right), 0.93 (left) between the CNN-enabled and semi-automated volume estimations. Conclusion In our work, we demonstrated that CNN-enabled kidney volume estimation is feasible and highly reproducible in low-dose, non-enhanced CT scans. Automatic segmentation can thereby quantitatively enhance radiological reports.

Funder

Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3