Author:
Moore Richard A,Tuanyok Apichai,Woods Donald E
Abstract
Abstract
Background
The ability of Burkholderia pseudomallei to survive in water likely contributes to its environmental persistence in endemic regions. To determine the physiological adaptations which allow B. pseudomallei to survive in aqueous environments, we performed microarray analyses of B. pseudomallei cultures transferred from Luria broth (LB) to distilled water.
Findings
Increased expression of a gene encoding for a putative membrane protein (BPSL0721) was confirmed using a lux-based transcriptional reporter system, and maximal expression was noted at approximately 6 hrs after shifting cells from LB to water. A BPSL0721 deficient mutant of B. pseudomallei was able to survive in water for at least 90 days indicating that although involved, BPSL0721 was not essential for survival. BPSL2961, a gene encoding a putative phosphatidylglycerol phosphatase (PGP), was also induced when cells were shifted to water. This gene is likely involved in cell membrane biosynthesis. We were unable to construct a PGP mutant suggesting that the gene is not only involved in survival in water but is essential for cell viability. We also examined mutants of polyhydroxybutyrate synthase (phbC), lipopolysaccharide (LPS) oligosaccharide and capsule synthesis, and these mutations did not affect survival in water. LPS mutants lacking outer core were found to lose viability in water by 200 days indicating that an intact LPS core provides an outer membrane architecture which allows prolonged survival in water.
Conclusion
The results from these studies suggest that B. pseudomallei survival in water is a complex process that requires an LPS molecule which contains an intact core region.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference20 articles.
1. Chaowagul W, White NJ, Dance DA, Wattanagoon Y, Naigowit P, Davis TM, Looareesuwan S, Pitakwatchara N: Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis. 1989, 159: 890-899.
2. Dance DAB: Melioidosis: the tip of the iceberg?. Clinical Microbiology Reviews. 1991, 4: 52-60.
3. Smith C J.C. Allen, N.M. Embi, O. Othman, N. Razak, G. Ismail: Human melioidosis: an emergingmedical problem. MIRCEN Journal of applied Microbiology technology. 1987, 3: 3443-3366.
4. Sanford JP: Pseudomonas species (including melioidosis and glanders). Principles and practiceof infectious diseases. Edited by: G. L. Mandell RGDJJEB. 1995, New York, New York, Churchhill Livingstone
5. Smith MD V. Wuthiekanun, A. L. Walsh, and N. J. White.: Quantitative discovery of Burkholderia pseudomallei from soil in Thailand. Trans R Soc Trop Med Hyg. 1995, 89: 488-490. 10.1016/0035-9203(95)90078-0.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献