Author:
Hwang Jeong-Min,Lee Ji-Hye,Yeh Jung-Yong
Abstract
Abstract
Background
During the routine laboratory cultivation of Lawsonia intracellularis, Mycoplasma contamination has been a frequent problem. When Mycoplasma contamination occurs in laboratories that study L. intracellularis, the cultures must be discarded for 4 reasons: 1) Mycoplasma is inevitably concentrated along with L. intracellularis during the passage of L. intracellularis; 2) Mycoplasma inhibits the growth of L. intracellularis; and 3) it is impossible to selectively eliminate Mycoplasma in L. intracellularis cultures. In this study, we observed the contamination of Mycoplasma species during L. intracellularis cultivation among multiple laboratories.
Results
The presence of a Mycoplasma infection in the L. intracellularis cultures was verified using polymerase chain reaction (PCR), and a sequence analysis of the partial 16S rRNA and 23S rRNA genes was performed. A PCR-based assay using genus-specific universal primers revealed that 29 (85.3%) of the 34 cultures were contaminated with Mycoplasma, including 26 with M. hyorhinis (89.2%), 2 with M. orale (6.9%), and 1 with M. fermentans (3.4%). The Mycoplasma contamination was not the result of infection with material of pig origin. McCoy cells, which are required for the cultivation of L. intracellularis, were also ruled out as the source of the Mycoplasma contamination.
Conclusions
In this study, M. hyorhinis was identified as the most common mollicute that contaminated L. intracellularis cultures. Whether L. intracellularis enhances the biological properties of Mycoplasma to promote infection in McCoy cells is not known. Because the McCoy cell line stocks that were used simultaneously were all negative for Mycoplasma, and the same worker handled both the McCoy cells to maintain the bacteria and the L. intracellularis cultures, it is possible that the L. intracellularis cultures are more vulnerable to Mycoplasma contamination. Taken together, these results suggest that continuous cultures of L. intracellularis must be tested for Mycoplasma contamination at regular intervals.
The GenBank accession numbers for the sequences reported in this paper are JN689375 to JN689377.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference34 articles.
1. Uphoff CC, Drexler HG: Detection of mycoplasma contaminations. Methods Mol Biol. 2005, 290: 13-23.
2. Uphoff CC, Drexler HG: Detection of mycoplasma contaminations in cell cultures by PCR analysis. Hum Cell. 1999, 12 (4): 229-236.
3. Razin S, Yogev D, Naot Y: Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev. 1998, 62 (4): 1094-1156.
4. Razin S, Freundt EA: Bergey's manual of systematic bacteriolog. The mycoplasma. Edited by: Krieg NR, Holt JG. 1984, Baltimore, MD: Williams & Wilkins, 740-775. 1
5. Jules Mattes M: Control of the mycoplasma epidemic. In Vitro Cell Dev Biol Anim. 2004, 40 (8-9): 253-254.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献