Cloning and biochemical characterization of an endo-1,4-β-mannanase from the coffee berry borer hypothenemus hampei

Author:

Aguilera-Gálvez Carolina,Vásquez-Ospina Juan J,Gutiérrez-Sanchez Pablo,Acuña-Zornosa Ricardo

Abstract

Abstract Background The study of coffee polysaccharides-degrading enzymes from the coffee berry borer Hypothenemus hampei, has become an important alternative in the identification for enzymatic inhibitors that can be used as an alternative control of this dangerous insect. We report the cloning, expression and biochemical characterization of a mannanase gene that was identified in the midgut of the coffee berry borer and is responsible for the degradation of the most abundant polysaccharide in the coffee bean. Methods The amino acid sequence of HhMan was analyzed by multiple sequence alignment comparisons with BLAST (Basic Local Alignment Search Tool) and CLUSTALW. A Pichia pastoris expression system was used to express the recombinant form of the enzyme. The mannanase activity was quantified by the 3,5-dinitrosalicylic (DNS) and the hydrolitic properties were detected by TLC. Results An endo-1,4-β-mannanase from the digestive tract of the insect Hypothenemus hampei was cloned and expressed as a recombinant protein in the Pichia pastoris system. This enzyme is 56% identical to the sequence of an endo-β-mannanase from Bacillus circulans that belongs to the glycosyl hydrolase 5 (GH5) family. The purified recombinant protein (rHhMan) exhibited a single band (35.5 kDa) by SDS-PAGE, and its activity was confirmed by zymography. rHhMan displays optimal activity levels at pH 5.5 and 30°C and can hydrolyze galactomannans of varying mannose:galactose ratios, suggesting that the enzymatic activity is independent of the presence of side chains such as galactose residues. The enzyme cannot hydrolyze manno-oligosaccharides such as mannobiose and mannotriose; however, it can degrade mannotetraose, likely through a transglycosylation reaction. The Km and kcat values of this enzyme on guar gum were 2.074 mg ml-1 and 50.87 s-1, respectively, which is similar to other mannanases. Conclusion This work is the first study of an endo-1,4-β-mannanase from an insect using this expression system. Due to this enzyme’s importance in the digestive processes of the coffee berry borer, this study may enable the design of inhibitors against endo-1,4-β-mannanase to decrease the economic losses stemming from this insect.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference37 articles.

1. Padilla-Hurtado B, Florez-Ramos C, Aguilera-Gálvez C, Medina-Olaya J, Ramirez-Sanjuan A, Rubio-Gomez J, Acuna-Zornosa R: Cloning and expression of an endo-1,4-beta-xylanase from the coffee berry borer. Hypothenemus hampei. BMC Res Notes. 2012, 5 (1): 23-10.1186/1756-0500-5-23.

2. Aguilera-Gálvez C, Gutierrez- Sanchez P, Acuña-Zornosa R: Modelado molecular e interacción enzima-ligando de potenciales inhibidores de la endo-1,4-β-mananasa de la broca del café Hypothenemus hampei. Boletin de Investigaciones Unisarc. 2012, 10 (1): 17-23.

3. Moreira L, Filho E: An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol. 2008, 79 (2): 165-178. 10.1007/s00253-008-1423-4.

4. Bustillo Pardey AE: Una revisión sobre la broca del café, Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae), en Colombia. Revista Colombiana de Entomología. 2006, 32: 101-116.

5. Redgwell R, Fischer M: Coffee carbohydrates. Braz J Plant Physiol. 2006, 18 (1): 165-174. 10.1590/S1677-04202006000100012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3