A novel angiomatoid epithelioid sarcoma cell line, Asra-EPS, forming tumors with large cysts containing hemorrhagic fluid in vivo

Author:

Imura Yoshinori,Naka Norifumi,Outani Hidetatsu,Yasui Hirohiko,Takenaka Satoshi,Hamada Ken-ichiro,Ozaki Ritsuro,Kaya Mitsunori,Yoshida Ken-ichi,Morii Eiichi,Myoui Akira,Yoshikawa Hideki

Abstract

Abstract Background Whereas we can use several human epithelioid sarcoma (ES) cell lines for basic and preclinical research, an angiomatoid ES cell line has not been reported to date. We have treated a case of an angiomatoid ES developing in the right upper extremity of a 67-year-old man. Methods An angiomatoid ES cell line, Asra-EPS was newly established and characterized for its morphology, growth rate and chromosomal analysis. Tumorigenicity of Asra-EPS cells was also analyzed in athymic nude mice. Results Asra-EPS cells were round, polygonal or spindle-shaped with an abundant cytoplasm and have been maintained continuously in vitro for over 150 passages during more than 15 months. These cells secreted cancer antigen 125 (CA 125), interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) into the culture medium. Asra-EPS cells were tumorigenic when implanted in nude mice with tumors reaching a volume of 1000 mm3 at around 50 days. Histological features of tumors formed in mice were essentially the same as those of the original tumor, exhibiting a multinodular proliferation of eosinophilic epithelioid and spindle-shaped cells with prominent areas of hemorrhage and blood-filled cystic spaces strikingly corresponding to the potential of hemorrhagic cyst formation in the original tumor. They showed immunopositive staining for cytokeratins (AE1/AE3 and CAM5.2), epithelial membrane antigen (EMA), vimentin, CD31, CD34 and CA 125, but negative for integrase interactor 1 (INI-1) and factor VIII-related antigen. Conclusions The established cell line represents a biologically relevant new tool to investigate the molecular pathology of human angiomatoid ES and to evaluate the efficacy of novel therapeutics both in vitro and in vivo.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3