Jaagsiekte sheep retrovirus detected in human lung cancer tissue arrays
-
Published:2014-03-19
Issue:1
Volume:7
Page:
-
ISSN:1756-0500
-
Container-title:BMC Research Notes
-
language:en
-
Short-container-title:BMC Res Notes
Author:
Linnerth-Petrik Nicolle M,Walsh Scott R,Bogner Paul N,Morrison Carl,Wootton Sarah K
Abstract
Abstract
Background
Adenocarcinoma is the most common type of non-small cell lung cancer and is frequently observed in non-smoking patients. Adenocarcinoma in-situ (formerly referred to as bronchioloalveolar carcinoma) is a subset of lung adenocarcinoma characterized by growth along alveolar septae without evidence of stromal, vascular, or pleural invasion, that disproportionately affects never-smokers, women, and Asians. Adenocarcinoma in-situ is morphologically and histologically similar to a contagious lung neoplasm of sheep called ovine pulmonary adenocarcinoma (OPA). OPA is caused by infection with the exogenous betaretrovirus, jaagsiekte sheep retrovirus (JSRV), whose envelope protein (Env) is a potent oncogene. Several studies have reported that a proportion of human lung adenocarcinomas are immunopositive for an antigen related to the Gag protein of JSRV, however other groups have been unable to verify these observations by PCR.
Methods
Here we examine human lung cancer tissue arrays (TA) for evidence of JSRV Env protein and DNA by immunohistochemical staining and PCR, respectively.
Results
Our results reveal that a subset of human lung cancers express an antigen that reacts with a JSRV Env-specific monoclonal antibody in immunohistochemistry and that exogenous JSRV-like env and gag sequences can be amplified from TA tumor samples, albeit inefficiently.
Conclusions
While a causative role has not been established, these data suggest that a JSRV-like virus might infect humans. With next generation sequencing approaches, a JSRV-like virus in human lung cancers may be identified which could have profound implications for prevention, diagnosis and therapy.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference48 articles.
1. American Cancer Society: Cancer facts and figures. 2013, [http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2013] 2. Janssen-Heijnen ML, Coebergh JW, Klinkhamer PJ, Schipper RM, Splinter TA, Mooi WJ: Is there a common etiology for the rising incidence of and decreasing survival with adenocarcinoma of the lung?. Epidemiology. 2001, 12: 256-258. 10.1097/00001648-200103000-00020. 3. Gazdar AF, Linnoila RI: The pathology of lung cancer–changing concepts and newer diagnostic techniques. Semin Oncol. 1988, 15: 215-225. 4. Maggiore C, Mule A, Fadda G, Rossi ED, Lauriola L, Vecchio FM, Capelli A: Histological classification of lung cancer. Rays. 2004, 29: 353-355. 5. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE, Garg K, Austin JH, Asamura H, Rusch VW, Hirsch FR, Scagliotti G, Mitsudomi T, Huber RM, Ishikawa Y, Jett J, Sanchez-Cespedes M, Sculier JP, Takahashi T, Tsuboi M, Vansteenkiste J, Wistuba I, Yang PC, Aberle D, Brambilla C, Flieder D, et al: International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011, 6: 244-285. 10.1097/JTO.0b013e318206a221.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|