Author:
Freitas Dulcecleide B,Reis Mariana P,Lima-Bittencourt Cláudia I,Costa Patrícia S,Assis Paulo S,Chartone-Souza Edmar,Nascimento Andréa MA
Abstract
Abstract
Background
Molecular studies of Bacillus diversity in various environments have been reported. However, there have been few investigations concerning Bacillus in steel plant environments. In this study, genotypic and phenotypic diversity and phylogenetic relationships among 40 bacterial isolates recovered from steel plant waste were investigated using classical and molecular methods.
Results
16S rDNA partial sequencing assigned all the isolates to the Bacillus genus, with close genetic relatedness to the Bacillus subtilis and Bacillus cereus groups, and to the species Bacillus sphaericus. tDNA-intergenic spacer length polymorphisms and the 16S–23S intergenic transcribed spacer region failed to identify the isolates at the species level. Genomic diversity was investigated by molecular typing with rep (repetitive sequence) based PCR using the primer sets ERIC2 (enterobacterial repetitive intergenic consensus), (GTG)5, and BOXAIR. Genotypic fingerprinting of the isolates reflected high intraspecies and interspecies diversity. Clustering of the isolates using ERIC-PCR fingerprinting was similar to that obtained from the 16S rRNA gene phylogenetic tree, indicating the potential of the former technique as a simple and useful tool for examining relationships among unknown Bacillus spp. Physiological, biochemical and heavy metal susceptibility profiles also indicated considerable phenotypic diversity. Among the heavy metal compounds tested Zn, Pb and Cu were least toxic to the bacterial isolates, whereas Ag inhibited all isolates at 0.001 mM.
Conclusion
Isolates with identical 16S rRNA gene sequences had different genomic fingerprints and differed considerably in their physiological capabilities, so the high levels of phenotypic diversity found in this study are likely to have ecological relevance.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference30 articles.
1. Claus D, Berkeley RCW: Genus Bacillus Cohn 1872, 174AL. Bergey's Manual of Systematic Bacteriology. Edited by: Sneath PHA, Mair NS, Sharpe ME, Holt JG. 1986, Baltimore: Williams & Wilkins, 2: 1105-1139.
2. Lapidus A, Goltsman E, Auger S, Galleron N, Ségurens B, Dossat C, Land ML, Broussolle V, Brillard J, Guinebretiere MH, Sanchis V, Nguen-the C, Leredeus D, Richardson P, Wincker P, Weissenbach J, Ehrlich SD, Sorokin A: Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biolog Interact. 2008, 171: 236-249. 10.1016/j.cbi.2007.03.003.
3. Ash C, Farrow JAE, Wallbanks S, Collins MD: Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol. 1991, 13: 202-206.
4. Nielsen P, Rainey FA, Outtrup H, Priest FG, Fritze D: Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett. 1994, 117: 61-65. 10.1016/0378-1097(94)90171-6.
5. Harrel LJ, Anderson GL, Wilson KH: Genetic variability of Bacillus anthracis and related species. J Clin Microbiol. 1995, 33: 1947-1950.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献