Validation of reference genes for quantitative real-time PCR studies in the dentate gyrus after experimental febrile seizures

Author:

Swijsen Ann,Nelissen Katherine,Janssen Daniel,Rigo Jean-Michel,Hoogland Govert

Abstract

Abstract Background Quantitative real-time PCR (qPCR) is a commonly used technique to quantify gene expression levels. Validated normalization is essential to obtain reliable qPCR data. In that context, normalizing to multiple reference genes has become the most popular method. However, expression of reference genes may vary per tissue type, developmental stage and in response to experimental treatment. It is therefore imperative to determine stable reference genes for a specific sample set and experimental model. The present study was designed to validate potential reference genes in hippocampal tissue from rats that had experienced early-life febrile seizures (FS). To this end, we applied an established model in which FS were evoked by exposing 10-day old rat pups to heated air. One week later, we determined the expression stability of seven frequently used reference genes in the hippocampal dentate gyrus. Results Gene expression stability of 18S rRNA, ActB, GusB, Arbp, Tbp, CycA and Rpl13A was tested using geNorm and Normfinder software. The ranking order of reference genes proposed by geNorm was not identical to that suggested by Normfinder. However, both algorithms indicated CycA, Rpl13A and Tbp as the most stable genes, whereas 18S rRNA and ActB were found to be the least stably expressed genes. Conclusions Our data demonstrate that the geometric averaging of at least CycA, Rpl13A and Tbp allows reliable interpretation of gene expression data in this experimental set-up. The results also show that ActB and 18S rRNA are not suited as reference genes in this model.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3