Gremlin in the pathogenesis of hepatocellular carcinoma complicating chronic hepatitis C: an immunohistochemical and PCR study of human liver biopsies

Author:

Guimei Maha,Baddour Nahed,ElKaffash Dalal,Abdou Laila,Taher Yousry

Abstract

Abstract Background The possible role of secretory products of fibrous tissue in the development of hepatocellular carcinoma (HCC) complicating chronic hepatitis C was investigated. Our hypothesis was that gremlin, secreted by fibroblasts, inhibited bone morphogenic protein (BMP), which mediates stem cell maturation into adult functioning hepatocytes, and thus, arrest stem cell maturation and promoted their proliferation in an immature state possibly culminating into development of HCCs. Results Protein expression of cytokeratin 19 (CK19) and fibroblast growth factor 2 (FGF-2), and mRNA expression of gremlin and BMP-7 were studied in 35 cases of chronic hepatitis, cirrhosis and HCC complicating chronic hepatitis C. CK19 expression was higher in cases of cirrhosis (0.004), which correlated with the grade (r = 0.64, p = 0.009) and stage (r = 0.71, p = 0.001). All HCCs were negative for CK19. Stem cell niche activation (as indicated as a ductular reaction) was highest in cases of cirrhosis (p = 0.001) and correlated with CK19 expression (r = 0.42, p = 0.012), the grade(r = 0.56, p = 0.024) and stage (0.66, p = 0.006). FGF-2 expression was highest in HCCs and correlated with the grade (r = 0.6, p = 0.013), stage (0.72, p = 0.002), CK19 expression (r = 0.71, p = 002) and ductular reaction (0.68, p = 0.004) in hepatitis cases. Higher numbers of cirrhosis cases and HCCs (p = 0.009) showed gremlin expression, which correlated with the stage (r = 0.7, p = 0.002). Gremlin expression correlated with that of CK19 (r = 0.699, p = 0.003) and FGF2 (r = 0.75, p = 0.001) in hepatitis cases. Conclusions Fibrosis promotes carcinogenesis by fibroblast-secreted gremlin that blocks BMP function and promotes stem cell activation and proliferation as well as possibly HCC development.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3