Author:
Cinar Mehmet Ulas,Islam Mohammad Ariful,Uddin Muhammad Jasim,Tholen Ernst,Tesfaye Dawit,Looft Christian,Schellander Karl
Abstract
Abstract
Background
To obtain reliable quantitative real-time PCR data, normalization relative to stable housekeeping genes (HKGs) is required. However, in practice, expression levels of 'typical' housekeeping genes have been found to vary between tissues and under different experimental conditions. To date, validation studies of reference genes in pigs are relatively rare and have never been performed in porcine alveolar macrophages (AMs). In this study, expression stability of putative housekeeping genes were identified in the porcine AMs in response to the stimulation with two pathogen-associated molecular patterns (PAMPs) lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Three different algorithms (geNorm, Normfinder and BestKeeper) were applied to assess the stability of HKGs.
Results
The mRNA expression stability of nine commonly used reference genes (B2M, BLM, GAPDH, HPRT1, PPIA, RPL4, SDHA, TBP and YWHAZ) was determined by qRT-PCR in AMs that were stimulated by LPS and LTA in vitro. mRNA expression levels of all genes were found to be affected by the type of stimulation and duration of the stimulation (P < 0.0001). geNorm software revealed that SDHA, B2M and RPL4 showed a high expression stability in the irrespective to the stimulation group, while SDHA, YWHAZ and RPL4 showed high stability in non-stimulated control group. In all cases, GAPDH showed the least stability in geNorm. NormFinder revealed that SDHA was the most stable gene in all the groups. Moreover, geNorm software suggested that the geometric mean of the three most stable genes would be the suitable combination for accurate normalization of gene expression study.
Conclusions
There was discrepancy in the ranking order of reference genes obtained by different analysing algorithms. In conclusion, the geometric mean of the SDHA, YWHAZ and RPL4 seemed to be the most appropriate combination of HKGs for accurate normalization of gene expression data in porcine AMs without knowing the type of bacterial pathogenic status of the animals.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference47 articles.
1. Ishii T, Wallace AM, Zhang X, Gosselink J, Abboud RT, English JC, Pare PD, Sandford AJ: Stability of housekeeping genes in alveolar macrophages from COPD patients. Eur Respir J. 2006, 27 (2): 300-306. 10.1183/09031936.06.00090405.
2. Rose N, Madec F: Occurrence of respiratory disease outbreaks in fattening pigs: relation with the features of a densely and a sparsely populated pig area in France. Vet Res. 2002, 33 (2): 179-190. 10.1051/vetres:2002100.
3. Sørensen V, Jorsal SE, Mousing J: Diseases of the respiratory system. Diseases of Swine. Edited by: Straw BE, Zimmerman JJ, Allaire SD', Taylor DJ. 2006, Blackwell Publishing, Ames, IA, 149-177. 9
4. Chung WB, Backstrom L, Mcdonald J, Collins MT: Actinobacillus-pleuropneumoniae culture supernatants interfere with killing of pasteurella-multocida by swine pulmonary alveolar macrophages. Can J Vet Res. 1993, 57 (3): 190-197.
5. Giuffra E, Genini S, Delputte PL, Malinverni R, Cecere M, Stella A, Nauwynck HJ: Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. J Gen Virol. 2008, 89: 2550-2564. 10.1099/vir.0.2008/003244-0.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献