Indoor versus outdoor scene recognition for navigation of a micro aerial vehicle using spatial color gist wavelet descriptors

Author:

Ganesan Anitha,Balasubramanian AnbarasuORCID

Abstract

AbstractIn the context of improved navigation for micro aerial vehicles, a new scene recognition visual descriptor, called spatial color gist wavelet descriptor (SCGWD), is proposed. SCGWD was developed by combining proposed Ohta color-GIST wavelet descriptors with census transform histogram (CENTRIST) spatial pyramid representation descriptors for categorizing indoor versus outdoor scenes. A binary and multiclass support vector machine (SVM) classifier with linear and non-linear kernels was used to classify indoor versus outdoor scenes and indoor scenes, respectively. In this paper, we have also discussed the feature extraction methodology of several, state-of-the-art visual descriptors, and four proposed visual descriptors (Ohta color-GIST descriptors, Ohta color-GIST wavelet descriptors, enhanced Ohta color histogram descriptors, and SCGWDs), in terms of experimental perspectives. The proposed enhanced Ohta color histogram descriptors, Ohta color-GIST descriptors, Ohta color-GIST wavelet descriptors, SCGWD, and state-of-the-art visual descriptors were evaluated, using the Indian Institute of Technology Madras Scene Classification Image Database two, an Indoor-Outdoor Dataset, and the Massachusetts Institute of Technology indoor scene classification dataset [(MIT)-67]. Experimental results showed that the indoor versus outdoor scene recognition algorithm, employing SVM with SCGWDs, produced the highest classification rates (CRs)—95.48% and 99.82% using radial basis function kernel (RBF) kernel and 95.29% and 99.45% using linear kernel for the IITM SCID2 and Indoor-Outdoor datasets, respectively. The lowest CRs—2.08% and 4.92%, respectively—were obtained when RBF and linear kernels were used with the MIT-67 dataset. In addition, higher CRs, precision, recall, and area under the receiver operating characteristic curve values were obtained for the proposed SCGWDs, in comparison with state-of-the-art visual descriptors.

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3