Two fully automated data-driven 3D whole-breast segmentation strategies in MRI for MR-based breast density using image registration and U-Net with a focus on reproducibility

Author:

Ying Jia,Cattell Renee,Zhao Tianyun,Lei Lan,Jiang Zhao,Hussain Shahid M.,Gao Yi,Chow H.-H. Sherry,Stopeck Alison T.,Thompson Patricia A.,Huang ChuanORCID

Abstract

AbstractPresence of higher breast density (BD) and persistence over time are risk factors for breast cancer. A quantitatively accurate and highly reproducible BD measure that relies on precise and reproducible whole-breast segmentation is desirable. In this study, we aimed to develop a highly reproducible and accurate whole-breast segmentation algorithm for the generation of reproducible BD measures. Three datasets of volunteers from two clinical trials were included. Breast MR images were acquired on 3 T Siemens Biograph mMR, Prisma, and Skyra using 3D Cartesian six-echo GRE sequences with a fat-water separation technique. Two whole-breast segmentation strategies, utilizing image registration and 3D U-Net, were developed. Manual segmentation was performed. A task-based analysis was performed: a previously developed MR-based BD measure, MagDensity, was calculated and assessed using automated and manual segmentation. The mean squared error (MSE) and intraclass correlation coefficient (ICC) between MagDensity were evaluated using the manual segmentation as a reference. The test-retest reproducibility of MagDensity derived from different breast segmentation methods was assessed using the difference between the test and retest measures (Δ2-1), MSE, and ICC. The results showed that MagDensity derived by the registration and deep learning segmentation methods exhibited high concordance with manual segmentation, with ICCs of 0.986 (95%CI: 0.974-0.993) and 0.983 (95%CI: 0.961-0.992), respectively. For test-retest analysis, MagDensity derived using the registration algorithm achieved the smallest MSE of 0.370 and highest ICC of 0.993 (95%CI: 0.982-0.997) when compared to other segmentation methods. In conclusion, the proposed registration and deep learning whole-breast segmentation methods are accurate and reliable for estimating BD. Both methods outperformed a previously developed algorithm and manual segmentation in the test-retest assessment, with the registration exhibiting superior performance for highly reproducible BD measurements.

Funder

National Institutes of Health

University of Arizona Cancer Center - Cancer Center Support Grant

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3