Reinforcement learning method for machining deformation control based on meta-invariant feature space

Author:

Zhao Yujie,Liu Changqing,Zhao Zhiwei,Tang Kai,He Dong

Abstract

AbstractPrecise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components. In the machining process, different batches of blanks have different residual stress distributions, which pose a significant challenge to machining deformation control. In this study, a reinforcement learning method for machining deformation control based on a meta-invariant feature space was developed. The proposed method uses a reinforcement-learning model to dynamically control the machining process by monitoring the deformation force. Moreover, combined with a meta-invariant feature space, the proposed method learns the internal relationship of the deformation control approaches under different stress distributions to achieve the machining deformation control of different batches of blanks. Finally, the experimental results show that the proposed method achieves better deformation control than the two existing benchmarking methods.

Funder

National Key R&D Programs of China

National Natural Science Foundation of China

National Science Fund of China for Distinguished Young Scholars

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3