Hyperparameter optimization for cardiovascular disease data-driven prognostic system

Author:

Saputra JaysonORCID,Lawrencya Cindy,Saini Jecky Mitra,Suharjito Suharjito

Abstract

AbstractPrediction and diagnosis of cardiovascular diseases (CVDs) based, among other things, on medical examinations and patient symptoms are the biggest challenges in medicine. About 17.9 million people die from CVDs annually, accounting for 31% of all deaths worldwide. With a timely prognosis and thorough consideration of the patient’s medical history and lifestyle, it is possible to predict CVDs and take preventive measures to eliminate or control this life-threatening disease. In this study, we used various patient datasets from a major hospital in the United States as prognostic factors for CVD. The data was obtained by monitoring a total of 918 patients whose criteria for adults were 28-77 years old. In this study, we present a data mining modeling approach to analyze the performance, classification accuracy and number of clusters on Cardiovascular Disease Prognostic datasets in unsupervised machine learning (ML) using the Orange data mining software. Various techniques are then used to classify the model parameters, such as k-nearest neighbors, support vector machine, random forest, artificial neural network (ANN), naïve bayes, logistic regression, stochastic gradient descent (SGD), and AdaBoost. To determine the number of clusters, various unsupervised ML clustering methods were used, such as k-means, hierarchical, and density-based spatial clustering of applications with noise clustering. The results showed that the best model performance analysis and classification accuracy were SGD and ANN, both of which had a high score of 0.900 on Cardiovascular Disease Prognostic datasets. Based on the results of most clustering methods, such as k-means and hierarchical clustering, Cardiovascular Disease Prognostic datasets can be divided into two clusters. The prognostic accuracy of CVD depends on the accuracy of the proposed model in determining the diagnostic model. The more accurate the model, the better it can predict which patients are at risk for CVD.

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3