Adaptive deep learning for head and neck cancer detection using hyperspectral imaging

Author:

Ma Ling,Lu Guolan,Wang Dongsheng,Qin Xulei,Chen Zhuo Georgia,Fei Baowei

Abstract

AbstractIt can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for cancer detection on hyperspectral images in an animal model. Specifically, an auto-encoder network is trained based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise prediction of cancerous and benign pixel. According to the output hypothesis of each pixel, the misclassified pixels would be reclassified in the right prediction direction based on their adaptive weights. The auto-encoder network is again trained based on these updated pixels. The learner can adaptively improve the ability to identify the cancer and benign tissue by focusing on the misclassified pixels, and thus can improve the detection performance. The adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor boundary on hyperspectral images and achieved a sensitivity of 92.32% and a specificity of 91.31% in our animal experiments. This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive tool for tumor detection, especially, for the tumor whose margin is indistinct and irregular.

Funder

National Institutes of Health

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3