Abstract
AbstractPancreatoscopy plays a significant role in the diagnosis and treatment of pancreatic diseases. However, the risk of pancreatoscopy is remarkably greater than that of other endoscopic procedures, such as gastroscopy and bronchoscopy, owing to its severe invasiveness. In comparison, virtual pancreatoscopy (VP) has shown notable advantages. However, because of the low resolution of current computed tomography (CT) technology and the small diameter of the pancreatic duct, VP has limited clinical use. In this study, an optimal path algorithm and super-resolution technique are investigated for the development of an open-source software platform for VP based on 3D Slicer. The proposed segmentation of the pancreatic duct from the abdominal CT images reached an average Dice coefficient of 0.85 with a standard deviation of 0.04. Owing to the excellent segmentation performance, a fly-through visualization of both the inside and outside of the duct was successfully reconstructed, thereby demonstrating the feasibility of VP. In addition, a quantitative analysis of the wall thickness and topology of the duct provides more insight into pancreatic diseases than a fly-through visualization. The entire VP system developed in this study is available at https://github.com/gaoyi/VirtualEndoscopy.git.
Funder
Education Department of Guangdong Province
Shenzhen Municipal Government’s “Peacock Plan”
SZU Top Ranking Project
Key-Area Research and Development Program of Guangdong Province
Shenzhen Key Laboratory Foundation
Key Technology Development Program of Shenzhen
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software
Reference39 articles.
1. Stewart BW, Wild CP (2014) World cancer report 2014. International Agency for Research on Cancer, Lyon.
2. Karasawa KI, Oda M, Kitasaka T, Misawa K, Fujiwara M, Chu CW et al (2017) Multi-atlas pancreas segmentation: atlas selection based on vessel structure. Med Image Anal 39:18-28. https://doi.org/10.1016/j.media.2017.03.006
3. Ito M, Makino N, Ueno Y (2013) Glucose intolerance and the risk of pancreatic cancer. Transl Gastrointest Cancer 2(4):223-229.
4. Koshitani T, Kodama T (2005) The role of endoscopy for the diagnosis of Intraductal papillary mucinous tumor of the pancreas. Tech Gastrointest Endosc 7(4):200-210. https://doi.org/10.1016/j.tgie.2005.10.008
5. Ringold DA, Shah RJ (2009) Peroral pancreatoscopy in the diagnosis and management of intraductal papillary mucinous neoplasia and indeterminate pancreatic duct pathology. Gastrointest Endosc Clin North Am 19(4):601-613. https://doi.org/10.1016/j.giec.2009.07.002
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献