Author:
Parvin Sazia,Nimmy Sonia Farhana,Kamal Md Sarwar
Abstract
AbstractAlzheimer’s disease (AD) is a neurological disorder that predominantly affects the brain. In the coming years, it is expected to spread rapidly, with limited progress in diagnostic techniques. Various machine learning (ML) and artificial intelligence (AI) algorithms have been employed to detect AD using single-modality data. However, recent developments in ML have enabled the application of these methods to multiple data sources and input modalities for AD prediction. In this study, we developed a framework that utilizes multimodal data (tabular data, magnetic resonance imaging (MRI) images, and genetic information) to classify AD. As part of the pre-processing phase, we generated a knowledge graph from the tabular data and MRI images. We employed graph neural networks for knowledge graph creation, and region-based convolutional neural network approach for image-to-knowledge graph generation. Additionally, we integrated various explainable AI (XAI) techniques to interpret and elucidate the prediction outcomes derived from multimodal data. Layer-wise relevance propagation was used to explain the layer-wise outcomes in the MRI images. We also incorporated submodular pick local interpretable model-agnostic explanations to interpret the decision-making process based on the tabular data provided. Genetic expression values play a crucial role in AD analysis. We used a graphical gene tree to identify genes associated with the disease. Moreover, a dashboard was designed to display XAI outcomes, enabling experts and medical professionals to easily comprehend the prediction results.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献