Author:
Jayaraman Thirumagal,Reddy M. Sravan,Mahadevappa Manjunatha,Sadhu Anup,Dutta Pranab Kumar
Abstract
AbstractNeurodegenerative disorders are commonly characterized by atrophy of the brain which is caused by neuronal loss. Ventricles are one of the prominent structures in the brain; their shape changes, due to their content, the cerebrospinal fluid. Analyzing the morphological changes of ventricles, aids in the diagnosis of atrophy, for which the region of interest needs to be separated from the background. This study presents a modified distance regularized level set evolution segmentation method, incorporating regional intensity information. The proposed method is implemented for segmenting ventricles from brain images for normal and atrophy subjects of magnetic resonance imaging and computed tomography images. Results of the proposed method were compared with ground truth images and produced sensitivity in the range of 65%–90%, specificity in the range of 98%–99%, and accuracy in the range of 95%–98%. Peak signal to noise ratio and structural similarity index were also used as performance measures for determining segmentation accuracy: 95% and 0.95, respectively. The parameters of level set formulation vary for different datasets. An optimization procedure was followed to fine tune parameters. The proposed method was found to be efficient and robust against noisy images. The proposed method is adaptive and multimodal.
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献