Photon-counting computed tomography thermometry via material decomposition and machine learning

Author:

Wang NathanORCID,Li Mengzhou,Haverinen Petteri

Abstract

AbstractThermal ablation procedures, such as high intensity focused ultrasound and radiofrequency ablation, are often used to eliminate tumors by minimally invasively heating a focal region. For this task, real-time 3D temperature visualization is key to target the diseased tissues while minimizing damage to the surroundings. Current computed tomography (CT) thermometry is based on energy-integrated CT, tissue-specific experimental data, and linear relationships between attenuation and temperature. In this paper, we develop a novel approach using photon-counting CT for material decomposition and a neural network to predict temperature based on thermal characteristics of base materials and spectral tomographic measurements of a volume of interest. In our feasibility study, distilled water, 50 mmol/L CaCl2, and 600 mmol/L CaCl2 are chosen as the base materials. Their attenuations are measured in four discrete energy bins at various temperatures. The neural network trained on the experimental data achieves a mean absolute error of 3.97 °C and 1.80 °C on 300 mmol/L CaCl2 and a milk-based protein shake respectively. These experimental results indicate that our approach is promising for handling non-linear thermal properties for materials that are similar or dissimilar to our base materials.

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3