Author:
Waloszczyk Piotr,Janus Tomasz,Alchimowicz Jacek,Grodzki Tomasz,Borowiak Krzysztof
Abstract
Abstract
Background
Lung cancer diagnosis in tissue material with commonly used histological techniques is sometimes inconvenient and in a number of cases leads to ambiguous conclusions. Frequently advanced immunostaining techniques have to be employed, yet they are both time consuming and limited. In this study a proteomic approach is presented which may help provide unambiguous pathologic diagnosis of tissue material.
Methods
Lung tissue material found to be pathologically changed was prepared to isolate proteome with fast and non selective procedure. Isolated peptides and proteins in ranging from 3.5 to 20 kDa were analysed directly using high resolution mass spectrometer (MALDI-TOF/TOF) with sinapic acid as a matrix. Recorded complex spectra of a single run were then analyzed with multivariate statistical analysis algorithms (principle component analysis, classification methods). In the applied protocol we focused on obtaining the spectra richest in protein signals constituting a pattern of change within the sample containing detailed information about its protein composition. Advanced statistical methods were to indicate differences between examined groups.
Results
Obtained results indicate changes in proteome profiles of changed tissues in comparison to physiologically unchanged material (control group) which were reflected in the result of principle component analysis (PCA). Points representing spectra of control group were located in different areas of multidimensional space and were less diffused in comparison to cancer tissues. Three different classification algorithms showed recognition capability of 100% regarding classification of examined material into an appropriate group.
Conclusion
The application of the presented protocol and method enabled finding pathological changes in tissue material regardless of localization and size of abnormalities in the sample volume. Proteomic profile as a complex, rich in signals spectrum of proteins can be expressed as a single point in multidimensional space and than analysed using advanced statistical methods. This approach seems to provide more precise information about a pathology and may be considered in futer evaluation of biomarkers for clinical applications in different pathology. Multiparameter statistical methods may be helpful in elucidation of newly expressed sensitive biomarkers defined as many factors "in one point".
Publisher
Springer Science and Business Media LLC
Subject
General Medicine,Histology,Pathology and Forensic Medicine
Reference21 articles.
1. Palmblad M, Tiss A, Cramer R: Mass spectrometry in clinical proteomics - from the present to the future. Proteomics Clin Appl. 2009, 3: 6-17. 10.1002/prca.200800090.
2. Munro NP, Cairns DA, Clarke P, Rogers M, Stanley AJ, Barrett JH, Harnden P, Thompson D, Eardley I, Banks RE, Knowles MA: Urinary biomarker profiling in transitional cell carcinoma. Int J Cancer. 2006, 119: 2642-2650. 10.1002/ijc.22238.
3. Coombes KR, Morris JS, Hu J, Edmonson SR, Baggerly KA: Serum proteomics profiling - a young technology begins to mature. Nature Biotechnol. 2005, 23: 291-292. 10.1038/nbt0305-291.
4. Check E: Proteomics and cancer: running before we can walk. Nature. 2004, 429: 496-497. 10.1038/429496a.
5. Zhang X, Leung SM, Morris CR, Shigenaga MK: Evaluation of a novel, integrated approach using functionalized magnetic beads, bench-top MALDI-TOF-MS with prestructured sample supports, and pattern recognition software for profiling potential biomarkers in human plasma. J Biomol Technol. 2004, 15: 167-175.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献