Validation of a new classifier for the automated analysis of the human epidermal growth factor receptor 2 (HER2) gene amplification in breast cancer specimens

Author:

Furrer Daniela,Jacob Simon,Caron Chantal,Sanschagrin François,Provencher Louise,Diorio Caroline

Abstract

Abstract Amplification of the human epidermal growth factor receptor 2 (HER2) is a prognostic marker for poor clinical outcome and a predictive marker for therapeutic response to targeted therapies in breast cancer patients. With the introduction of anti-HER2 therapies, accurate assessment of HER2 status has become essential. Fluorescence in situ hybridization (FISH) is a widely used technique for the determination of HER2 status in breast cancer. However, the manual signal enumeration is time-consuming. Therefore, several companies like MetaSystem have developed automated image analysis software. Some of these signal enumeration software employ the so called “tile-sampling classifier”, a programming algorithm through which the software quantifies fluorescent signals in images on the basis of square tiles of fixed dimensions. Considering that the size of tile does not always correspond to the size of a single tumor cell nucleus, some users argue that this analysis method might not completely reflect the biology of cells. For that reason, MetaSystems has developed a new classifier which is able to recognize nuclei within tissue sections in order to determine the HER2 amplification status on nuclei basis. We call this new programming algorithm “nuclei-sampling classifier”. In this study, we evaluated the accuracy of the “nuclei-sampling classifier” in determining HER2 gene amplification by FISH in nuclei of breast cancer cells. To this aim, we randomly selected from our cohort 64 breast cancer specimens (32 nonamplified and 32 amplified) and we compared results obtained through manual scoring and through this new classifier. The new classifier automatically recognized individual nuclei. The automated analysis was followed by an optional human correction, during which the user interacted with the software in order to improve the selection of cell nuclei automatically selected. Overall concordance between manual scoring and automated nuclei-sampling analysis was 98.4% (100% for nonamplified cases and 96.9% for amplified cases). However, after human correction, concordance between the two methods was 100%. We conclude that the nuclei-based classifier is a new available tool for automated quantitative HER2 FISH signals analysis in nuclei in breast cancer specimen and it can be used for clinical purposes.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3