Establishment of a novel experimental model of infected anal fistula in rat

Author:

Zhao MengORCID,Wang AitongORCID,Zhang LeishengORCID,Yu HaoORCID

Abstract

AbstractRefractory Crohn's-like enterocutaneous fistula indicates the aggressive manifestation and lead to poor prognosis of patients. The development of multidisciplinary strategies for fistula administration largely subjects to the deficiency of animal model for disease remodeling and the underlying pathogenic mechanism. For the purpose, infected anal fistula model was conducted by BLV single-core electrolytic aluminum combined with dextran sodium sulfate. Notably, the inflammatory granulation tissue and inflammatory cell infiltration in the perianal tissue were arised on day 7 of the model by utilizing the Hematoxylin–eosin staining. With the aid of magnetic resonance imaging and signals of high-brightness. We intuitively observed the thickening and edema appeared in the fistula wall, which collectively suggested the formation of a fistula in the perianal area of the rat. Distinguish from the current models of anal fistula modeling including the body surface of fistula, backside of fistula and drainage wire of fistula, our model revealed multifaceted advantages such as quicker generation, higher modeling rate, preferable stability, better consistency, cost-effective, and in particular, more convenient to mimic clinical manifestations of anal fistula.

Funder

Natural Science Foundation of Jiangxi Province

Science and technology projects of Guizhou Province

Natural Science Foundation of Tianjin Municipal Science and Technology Commission

Natural Science Foundation of Shandong Province

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3