Pedestrian detection with motion features via two-stream ConvNets

Author:

Yoshihashi RyotaORCID,Trinh Tu Tuan,Kawakami Rei,You Shaodi,Iida Makoto,Naemura Takeshi

Abstract

Abstract Motion information can be important for detecting objects, but it has been used less for pedestrian detection, particularly with deep-learning-based methods. We propose a method that uses deep motion features as well as deep still-image features, following the success of two-stream convolutional networks, each of which are trained separately for spatial and temporal streams. To extract motion clues for detection differentiated from other background motions, the temporal stream takes as input the difference in frames that are weakly stabilized by optical flow. To make the networks applicable to bounding-box-level detection, the mid-level features are concatenated and combined with a sliding-window detector. We also introduce transfer learning from multiple sources in the two-stream networks, which can transfer still image and motion features from ImageNet and an action recognition dataset respectively, to overcome the insufficiency of training data for convolutional neural networks in pedestrian datasets. We conducted an evaluation on two popular large-scale pedestrian benchmarks, namely the Caltech Pedestrian Detection Benchmark and Daimler Mono Pedestrian Detection Benchmark. We observed 10% improvement compared to the same method but without motion features.

Funder

Grant-in-Aid for JSPS Fellows

JSPS KAKENHI

Ministry of the Environment

Publisher

Springer Science and Business Media LLC

Subject

Computer Vision and Pattern Recognition

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ViT-PGC: vision transformer for pedestrian gender classification on small-size dataset;Pattern Analysis and Applications;2023-09-26

2. Towards the design of vision-based intelligent vehicle system: methodologies and challenges;Evolutionary Intelligence;2022-03-09

3. Pedestrian Detection Using Regression-Based Feature Selection and Disparity Map;Advances in Computer Science and Ubiquitous Computing;2021

4. Recent trends in pedestrian detection for robotic vision using deep learning techniques;Artificial Intelligence for Future Generation Robotics;2021

5. Pedestrian Detection - A Survey;Learning and Analytics in Intelligent Systems;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3