Abstract
Abstract
Motion information can be important for detecting objects, but it has been used less for pedestrian detection, particularly with deep-learning-based methods. We propose a method that uses deep motion features as well as deep still-image features, following the success of two-stream convolutional networks, each of which are trained separately for spatial and temporal streams. To extract motion clues for detection differentiated from other background motions, the temporal stream takes as input the difference in frames that are weakly stabilized by optical flow. To make the networks applicable to bounding-box-level detection, the mid-level features are concatenated and combined with a sliding-window detector. We also introduce transfer learning from multiple sources in the two-stream networks, which can transfer still image and motion features from ImageNet and an action recognition dataset respectively, to overcome the insufficiency of training data for convolutional neural networks in pedestrian datasets. We conducted an evaluation on two popular large-scale pedestrian benchmarks, namely the Caltech Pedestrian Detection Benchmark and Daimler Mono Pedestrian Detection Benchmark. We observed 10% improvement compared to the same method but without motion features.
Funder
Grant-in-Aid for JSPS Fellows
JSPS KAKENHI
Ministry of the Environment
Publisher
Springer Science and Business Media LLC
Subject
Computer Vision and Pattern Recognition
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献