Pedestrian segmentation based on a spatio-temporally consistent graph-cut with optimal transport

Author:

Yu Yang,Makihara Yasushi,Yagi Yasushi

Abstract

Abstract We address a method of pedestrian segmentation in a video in a spatio-temporally consistent way. For this purpose, given a bounding box sequence of each pedestrian obtained by a conventional pedestrian detector and tracker, we construct a spatio-temporal graph on a video and segment each pedestrian on the basis of a well-established graph-cut segmentation framework. More specifically, we consider three terms as an energy function for the graph-cut segmentation: (1) a data term, (2) a spatial pairwise term, and (3) a temporal pairwise term. To maintain better temporal consistency of segmentation even under relatively large motions, we introduce a transportation minimization framework that provides a temporal correspondence. Moreover, we introduce the edge-sticky superpixel to maintain the spatial consistency of object boundaries. In experiments, we demonstrate that the proposed method improves segmentation accuracy indices, such as the average and weighted intersection of union on TUD datasets and the PETS2009 dataset at both the instance level and semantic level.

Publisher

Springer Science and Business Media LLC

Subject

Computer Vision and Pattern Recognition

Reference44 articles.

1. Plaenkers R, Fua P (2002) Model-based silhouette extraction for accurate people tracking In: European Conference on Computer Vision, 325–339.. Springer, Berlin.

2. Chen X, He Z, Anderson D, Keller J, Skubic M (2006) Adaptive silhouette extraction and human tracking in complex and dynamic environments In: Image Processing, 2006 IEEE International Conference On, 561–564.. IEEE, New York.

3. Ahn J-H, Choi C, Kwak S, Kim K, Byun H (2009) Human tracking and silhouette extraction for human–robot interaction systems. Patt Anal Appl 12(2):167–177.

4. Howe NR (2004) Silhouette lookup for automatic pose tracking In: Computer Vision and Pattern Recognition Workshop, 2004. CVPRW’04. Conference On, 15–22.. IEEE, New York.

5. Wang L, Suter D (2007) Recognizing human activities from silhouettes: Motion subspace and factorial discriminative graphical model In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference On, 1–8.. IEEE, New York.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. : A Large-Scale Benchmark for Rib Labeling and Anatomical Centerline Extraction;IEEE Transactions on Medical Imaging;2024-01

2. Towards a Simple and Efficient Object-based Superpixel Delineation Framework;2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI);2021-10

3. Application and Perspectives of Convolutional Neural Networks in Digital Intelligence;Towards Digital Intelligence Society;2020-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3