Author:
Iwaguchi Takafumi,Funatomi Takuya,Aoto Takahito,Kubo Hiroyuki,Mukaigawa Yasuhiro
Abstract
Abstract
We tackle an optical measurement of the internal structure of a diffuse surface object—we define as an object that has a diffuse surface and its interior is transparent, like grapes or hollow plastic bottles. Our approach is based on optical tomography that reconstructs the interior from observations of absorption of light rays from various views, under the projection of the light. The difficulty lies in the fact that a light ray that enters changes its direction at the interaction of the surface, unlike X-ray that travels straight through the object. We introduce a model of light path in the object called shortest-path model. We acquire the absorption of light rays through the object by the measurement upon the assumption of the model. Since this measurement acquires insufficient observation to reconstruct the interior by conventional reconstruction algorithms, we also introduce a reconstruction method based on a numerical optimization that a physical requirement of the absorption is taken into account. Our method is confirmed successful to measure the interior in a real-world experiment.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Computer Vision and Pattern Recognition
Reference13 articles.
1. Sharpe J (2004) Optical projection tomography. Annu Rev Biomed Eng 6:209–228.
2. Florescu L, Schotland JC, Markel VA (2009) Single-scattering optical tomography. Phys Rev E 79(3):036607.
3. Yuan B, Tamaki T, Kushida T, Mukaigawa Y, Kubo H, Raytchev B, Kaneda K (2015) Optical tomography with discretized path integral. J Med Imaging 2(3):033501.
4. Ishii Y, Arai T, Mukaigawa Y, Tagawa J, Yagi Y (2013) Scattering tomography by Monte Carlo voting In: IAPR International Conference on Machine Vision Applications, 1–5.
5. Akashi R, Nagahara H, Mukaigawa Y, Taniguchi R (2015) Scattering tomography using ellipsoidal mirror In: 2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), 1–5. https://doi.org/10.1109/FCV.2015.7103702.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献