Multibody motion segmentation for an arbitrary number of independent motions

Author:

Sako Yutaro,Sugaya YasuyukiORCID

Abstract

Abstract We propose a new method for segmenting feature point trajectories tracked through a video sequence without assuming a number of independent motions. Our method realizes motion segmentation of feature point trajectories by hierarchically separating the trajectories into two affine spaces in a situation that we do not know the number of independently moving objects. We judge that input trajectories should be separated by comparing the likelihoods computed from those trajectories before/after separation. We also consider integration of the resulting separated trajectories for avoiding too much segmentations. By using real video images, we confirmed the efficiency of our proposed method.

Publisher

Springer Science and Business Media LLC

Subject

Computer Vision and Pattern Recognition

Reference8 articles.

1. Costeira JP, Kanade T (1998) A multibody factorization method for independently moving objects. Int J Comput Vision 29(3): 159–179.

2. Kanatani K, Matsunaga C (2002) Estimating the number of independent motions for multibody motion segmentation In: Proc of the 5th Asian Conference on Computer Vision (ACCV2002), 7–12, Melbourne, Australia.

3. Sugaya Y, Kanatani K (2004) Multi-stage unsupervised learning for multi-body motion segmentation. IEICE Trans Inform Syst E87-D(7): 1935–1942.

4. Sugaya Y, Kanatani K (2010) Improved multistage learning for multibody motion segmentation In: Proc. of International Conference of Computer Vision Theory and Applications (VISAPP2010), 199–206, Angers, France.

5. Sugaya Y, Kanatani K (2013) Removing mistracking of multibody motion video database Hopkins155 In: Proc. of the 24th British Machine Vision Conference (BMVC2013), Bristol, U.K.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3