Development and internal validation of an algorithm for estimating mortality in patients encountered by physician-staffed helicopter emergency medical services

Author:

Reitala EmilORCID,Lääperi Mitja,Skrifvars Markus B.,Silfvast Tom,Vihonen Hanna,Toivonen Pamela,Tommila Miretta,Raatiniemi Lasse,Nurmi Jouni

Abstract

Abstract Background Severity of illness scoring systems are used in intensive care units to enable the calculation of adjusted outcomes for audit and benchmarking purposes. Similar tools are lacking for pre-hospital emergency medicine. Therefore, using a national helicopter emergency medical services database, we developed and internally validated a mortality prediction algorithm. Methods We conducted a multicentre retrospective observational register-based cohort study based on the patients treated by five physician-staffed Finnish helicopter emergency medical service units between 2012 and 2019. Only patients aged 16 and over treated by physician-staffed units were included. We analysed the relationship between 30-day mortality and physiological, patient-related and circumstantial variables. The data were imputed using multiple imputations employing chained equations. We used multivariate logistic regression to estimate the variable effects and performed derivation of multiple multivariable models with different combinations of variables. The models were combined into an algorithm to allow a risk estimation tool that accounts for missing variables. Internal validation was assessed by calculating the optimism of each performance estimate using the von Hippel method with four imputed sets. Results After exclusions, 30 186 patients were included in the analysis. 8611 (29%) patients died within the first 30 days after the incident. Eleven predictor variables (systolic blood pressure, heart rate, oxygen saturation, Glasgow Coma Scale, sex, age, emergency medical services vehicle type [helicopter vs ground unit], whether the mission was located in a medical facility or nursing home, cardiac rhythm [asystole, pulseless electrical activity, ventricular fibrillation, ventricular tachycardia vs others], time from emergency call to physician arrival and patient category) were included. Adjusted for optimism after internal validation, the algorithm had an area under the receiver operating characteristic curve of 0.921 (95% CI 0.918 to 0.924), Brier score of 0.097, calibration intercept of 0.000 (95% CI -0.040 to 0.040) and slope of 1.000 (95% CI 0.977 to 1.023). Conclusions Based on 11 demographic, mission-specific, and physiologic variables, we developed and internally validated a novel severity of illness algorithm for use with patients encountered by physician-staffed helicopter emergency medical services, which may help in future quality improvement.

Funder

Ensihoidon Tukisäätiö sr

University of Helsinki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3